
NASIS CVIR Language Manual
Scripting language for NASIS Calculations, Validations, Interpretations and Reports

NASIS 6.0 Edition

US Department of Agriculture

Natural Resources Conservation Service

Gary Spivak

March 24, 2010

 NASIS CVIR Language Manual – Release 6.0 b

Contents
NASIS CVIR Language Manual ... 1

Overview of CVIR Scripts ... 1
Data Flow in CVIR Scripts .. 2
Query Scripts ... 3
Property Scripts ... 3
Calculation and Validation Scripts .. 4
Report Scripts .. 5

Text Style Reports .. 6
XML Style Reports ... 6
Running Reports Against Local or National Database .. 7

CVIR Syntax Reference ... 9
Conventions used in this Guide .. 9
ACCEPT..10
BASE TABLE ..11
DEFINE ...12

Storing Multiple Values in a Variable ...13
Expression Syntax ...13
Explanation of Expression Syntax ...17
String Expressions ..18
Function Expressions ..21
Numeric Functions ..25
REGROUP Expression ..30

DERIVE ...32
EXEC SQL ..33
EXEC SQL: Sort Specification ...37
EXEC SQL: Aggregation Specification ..38
FONT ..44
HEADER and FOOTER...45
INPUT ...46
INTERPRET ..47
Using Interpretations in Reports: ...48
MARGIN ..50
PAGE ..51
PARAMETER ..52
PITCH ...55
SECTION ..56
SECTION: Conditions ...58
SECTION: KEEP option ..60
SECTION: Output Specifications ...61
AT Statement ..63
ELEMENT Statement ..65
Column Specifications ...68
Column Layout Specifications ...70
SET ...75
TEMPLATE ...76
WHEN ...77

Using Subreports ..78
Appendix 1: Conventions for Web Soil Survey Reports ..79

 NASIS CVIR Language Manual – Release 6.0 c

DocBook XML ...79
XML Elements Used in Reports ..80

Elements used in tables ..82
Elements used in non-table reports ...83
Attributes used in all elements ...83

Parameters for Reports ...85
Using parameters in a report query ...86

Script Variables ...87

 NASIS CVIR Language Manual – Release 6.0 1

Overview of CVIR Scripts

In NASIS, all Queries, Reports, Calculations, Validations and Properties contain a script, which
is a set of instructions for reading data from the database and using the data to produce some
result. All these scripts have a common structure with various options that are specific to their
function. This reference manual contains the complete specifications for CVIR scripts.

The major parts of a CVIR script are:

• Query: Instructions to read data from the database, written in a variant of SQL
(Structured Query Language, an international standard for working with relational
databases, often pronounced “sequel”). A simple CVIR query looks like:
EXEC SQL SELECT musym, muname from mapunit, lmapunit
WHERE JOIN mapunit TO lmapunit;.

• Data Manipulation: A series of instructions for working with the data to produce new
data values, using mathematical formulas, if-then-else logic, and other operations. An
example of a data manipulation statement is:
DEFINE complabel IF ISNULL(localphase) THEN compname
 ELSE compname || “, ” || localphase.

• Output: Instructions for producing some result. In a report script this includes the
specifications for laying out the report; for a calculation script it specifies which columns
of the database record will be updated; and so forth. Typical output statements for a
report are:
TEMPLATE mapunit
 AT LEFT FIELD WIDTH 20, FIELD WIDTH 8 SEPARATOR “|”.
SECTION
 DATA
 USING mapunit muname, musym.
END SECTION.

CVIR scripts are stored in tables in the NASIS database and are assigned ownership in the same
way as data in the soils tables. Anyone can run a CVIR script, but you must be a member of the
group that owns the script, and you must check it out from the server, in order to edit it. The
scripts are found in the Explorer area (left side) of the NASIS screen, organized by the type of
script and the NASIS site. Menu options are provided to run a script or open it for viewing and
editing.

The CVIR Syntax Reference section of this document describes each CVIR statement in detail. It
is arranged in alphabetic order, with a note on what types of scripts each statement can be used
in. That information will help you get the syntax right, but doesn’t tell you the overall concepts.
The next few sections will give some guidelines on writing different kinds of scripts.

 NASIS CVIR Language Manual – Release 6.0 2

Data Flow in CVIR Scripts

A script specifies a set of actions to be performed but not
necessarily the order in which they will be performed. The
CVIR processor collects all the statements of a particular kind
and processes them as a group at the point in the data flow
where they are needed. The sequence is:

1. Configuration statements are processed just once before
anything else happens. These are statements that don’t
produce any actual data, but instead specify conditions
for other statements to work with. They include:

• ACCEPT
• PARAMETER
• BASE TABLE
• PAGE, MARGIN, FONT and PITCH
• TEMPLATE

2. Data input statements provide the data the script works
on. Most scripts include the EXEC SQL statement to
get data from the database. The INPUT statement can be
used to read data from a file. There are a number of
rules about the interactions between data input
statements when the script contains more than one,
which are described in the Syntax Reference section.

3. References to other scripts are processed next. The
DERIVE statement is used to obtain data from a

Property script, and the INTERPRET statement generates interpretations that can be
displayed in a report.

4. Data manipulation is the next step. This is done with the DEFINE and ASSIGN
statements, which can include mathematical formulas, if-then-else conditions, and other
functions. The result is a set of variables whose values can be used in the next step.

5. The final step is output of data, and this varies depending on the type of script. In a
Report script, the output specifications define how the information will be formatted. For
a Calculation script, the output specifications identify what fields in the database will be
updated, while a Validation script specifies the messages to be produced when error
conditions are found. A Property script has no output section at all.

6. After completion of these steps the process continues with step 2 and repeats until there is
no more data to process.

Configuration

EXEC SQL

INTERPRET /
DERIVE

DEFINE / ASSIGN

Output

 NASIS CVIR Language Manual – Release 6.0 3

Query Scripts

In NASIS a Query (with a capital Q) is a script used to find data for use in a NASIS session. A
Query can be run against the national database to identify data to be downloaded to the local
(workstation) database, or it can be run against the local database to identify the data that will
appear in the table editors and reports (known as the selected set).

A Query script is the most minimal of all CVIR scripts. It consists of exactly one, partial SQL
query. It does not even use the EXEC SQL prefix as in other CVIR scripts. The only parts of a
SQL query it uses are the FROM and WHERE clauses. When a Query is run, NASIS produces
the full SQL query using the script plus any run-time options selected by the user, such as target
tables and parameters.

Details on the CVIR variant of SQL are in the Syntax Reference section under EXEC SQL. The
key features of a Query script are:

• All the tables listed in the FROM clause are candidates to be target tables when the
Query is run. For each target table the user picks, a SQL query is constructed to select
rows in that table. Additional rows linked to the target table are then found to fill out the
selected set or download list.

• Query parameters can be specified in the WHERE clause by using a comparison with a
question mark, such as “areasymbol = ?”. When the query is run, NASIS creates a field
for the user to enter an area symbol. It automatically looks up “areasymbol” in the
metadata to determine its data type and whether it has a fixed choice list (domain).

Property Scripts

After the Query, the next simplest type of script is the Property. It has several uses in NASIS. As
the name suggests, a Property is primarily a way to get some soil property data from the database.
It typically contains all the logic needed to select data from the appropriate tables, aggregate to
the required level and perform other needed transformations. Putting all this in a Property script
provides consistency in the use of a particular soil property.

Property scripts are used:

• In the Evaluation portion of an Interpretation. In the Evaluation Editor the user picks
exactly one Property to be the source of data for the evaluation function. When used for
this purpose the Property must define one or more of the variables “low”, “rv” and “high”
for use by the Evaluation. The type of data and number of these variables must agree with
the Data Type and Modality fields entered on the General page of the Property editor. The
Property cannot use the ACCEPT statement to take parameters.

• In the DERIVE statement of another CVIR script (Report, Calculation, Validation or
another Property). When used this way you are not limited to the variables “low”, “rv”
and “high” because the DERIVE statement specifies which Property variables it is

 NASIS CVIR Language Manual – Release 6.0 4

expecting. The DERIVE statement can also pass parameters to the Property’s ACCEPT
statement.

• In the Interpretations Editor with the Run button. This is just used for testing a Property.
The user first highlights a row in the Property’s base table and then clicks Run. A page of
output is displayed listing all the variables defined in the Property script and the values
they take on when the Property is run with the selected row of data.

Key features of a Property script include:

• There must be a BASE TABLE statement to specify for which database table the queries
in the script are run. Properties used in Interpretations will have:
BASE TABLE component.

• The script can include one or more queries. The queries are run in the context from which
they are called. For example, when called from an Evaluation the queries return data for
the Component record being evaluated, and when called from a CVIR script they return
data for the row of the Base Table that the caller is operating on. The CVIR engine does
this by adding an extra condition to the query’s Where clause to limit its results to the
current row of the base table.

• The script can invoke other Property scripts using the DERIVE statement, as described in
the Syntax Reference section.

• The script can include DEFINE and ASSIGN statements to create new variables or
modify the values of variables supplied by the queries.

Calculation and Validation Scripts

Calculations and Validations are scripts that automate complex data entry or data checking
procedures. A Calculation is an approved, standard procedure for deriving data values using data
previously entered in the database. A Validation is an approved, standard procedure for checking
that various data in the database are consistent with each other and/or fully populated.

To use a Calculation or Validation script:

• Open the Table Editor to the Base Table defined in the script.

• Select one or more rows in the table.

• Locate the Calculation or Validation in either the Explorer or Editor window and click on
Run.

• If running a Calculation, check the options as needed to allow the calculated results to
replace data that was manually entered (tagged M) or entered prior to the time that source
tracking was established (tagged P). If these are not checked a Calculation will only
replace empty fields or ones with previously calculated values.

 NASIS CVIR Language Manual – Release 6.0 5

Key features of Calculation and Validations scripts include:

• The script can contain all the parts described above for Property scripts.

• A Validation script has one or more WHEN statements which produce messages when a
specified condition occurs. The messages are displayed in the NASIS message window,
along with a link to the row that produced the message.

• A Calculation script has one or more SET statements that identify the fields where
calculated results will be placed. A Calculation script can also use WHEN statements to
produce message about problems with the calculation.

• Calculations and Validations may be created or edited only by people belonging to an
administrative (NSSC Pangaea) group in NASIS. If the script is marked Not Ready for
Use, only a member of the owning group can run the script.

Report Scripts

A Report is the most complex type of CVIR script because there are many details that have to be
specified to produce the exact output format that you want to see. There are also two independent
styles of report generation, text based and XML based, which will have to be discussed
separately. And finally, there is an option to run a report on either the local or the national
database, which can produce different results.

To use Reports:

• Open a Report from the Report Explorer to see the script and other details in a Report
Editor window.

• Run an open Report from the Report Editor, or run a Report without opening it by
selecting it in the Report Explorer and picking a Run option from the Explorer menu.
Select either Run Against Local Database or Run Against National Database. See notes
below about running against the national database to avoid producing too much output.

• The output of a Report is placed in a temporary file on your computer and then opened
with the standard application for the type of file. For example, the standard application
for HTML output is a web browser (such as Internet Explorer), and for text (TXT) output
the application might be Notepad. You can configure the application for each file type (in
Windows XP) using Control Panel / Folder Options / File Types.

Key features of a Report script include:

• The script can contain all the parts described above for Property scripts, plus output
specifications.

 NASIS CVIR Language Manual – Release 6.0 6

• A script that contains nothing but a query (EXEC SQL statement) produces a standard
report output consisting of a simple table with each field of the SELECT list as a column.
This is convenient for a quick-and-dirty type of data listing.

• The INTERPRET statement can be used to generate interpretations for inclusion in the
report output.

• For text style reports the default layout is an 8.5 by 11 inch page with ½ inch margins and
12 point font. Page layout statements can be used to change these specifications. For
XML or HTML style reports no page specifications are used, because the browser and
style sheet control the final appearance of the report.

• The TEMPLATE statement can be used to define the layout of a line of report output.
This makes it easy to apply the same layout to many output lines, to produce a consistent
appearance.

• The SECTION statement provides a way to group the report output statements and
specify when they will be used. A Section represents a block of report output that can
appear at the beginning or end of the report, at a point where some data changes, or
repeatedly.

Text Style Reports

Text style output is the type of report produced by NASIS 5.x and earlier. It consists of lines of
text, where a line is just a series of characters and each character takes up a fixed amount of
space. When a series of lines with consistent layouts are produced, the characters line up to
produce the appearance of columns in a table. Often a vertical bar symbol (|) is used to separate
report columns. Text style output generally does not look right when printed with a proportional
font.

Text output does not have to be in table format. It can look like paragraphs or lists, since each
line of output can have its own format. The output can also be stored in a file and imported into
another program, such as a spreadsheet, using either a fixed column width or variable width and
delimiters. There are existing reports in NASIS that can be used as examples for any of these
output formats. It is much easier to copy and modify an existing report than to start from scratch.

The AT command is the key to producing text style output. It specifies where on the line each
piece of data will be placed, and how it will be formatted. There are numerous options, described
in the reference section below.

XML Style Reports

XML style output was developed for Web Soil Survey and has been included in NASIS 6. XML
(eXtended Markup Language) is an example of a standard data format called “markup” because
it contains markings, or tags, mixed with the text. A tag is a name, and possibly some other
attributes, enclosed in angle brackets, such as <table>. A tag typically describes how the

 NASIS CVIR Language Manual – Release 6.0 7

following text is used, or what type of text it is. XML output can be used in a variety of ways,
including an import to other programs or a source for transforming into formatted reports.

XML output is produced with the ELEMENT command. A report cannot use both ELEMENT
and AT commands. An ELEMENT always has a name, and may also have attributes and content:

• An element name must correspond with a standard XML tag for the type of output you
want to produce. For example, a formatted table begins with a <table> tag, which is
specified in a NASIS report as ELEMENT “table”. The standard tags are listed in
Appendix 1.

• Many XML tags have standard attributes that modify the output appearance. For example,
a table can have borders drawn between cells with a tag like <table border=“1”>.
In a NASIS report this is written as
 ELEMENT “table” ATTRIB(“border”, “1”).

• Almost all XML tags have some content, which could be other tags or just data to be
output. The content is preceded with a tag like those just described, and followed with a
closing tag that has just the tag name prefixed with a slash. For example, a paragraph in
XML might be <para>This is some information to print.</para>.
The corresponding NASIS statement would be
 ELEMENT “para” “This is some information to print.”.

• A plain ELEMENT command produces both the opening and closing tags. Sometimes it
is not possible to put all the content you want into a single ELEMENT command, so you
can use ELEMENT OPEN “name” to produce just the opening tag. Later in the report
script you must use ELEMENT CLOSE “name” to produce the closing tag.

NASIS allows the report output format to be specified as HTML, which is just a variation of
XML. To produce reports that look like Web Soil Survey reports, use the elements and attributes
listed in the appendix for the DocBook XML standard. This is converted automatically to HTML
for displaying in a web browser. If you are familiar with HTML you can use regular HTML tags
as NASIS elements instead of DocBook XML.

Running Reports Against Local or National Database

When a report is run against the local database it normally uses only data in the selected set. This
is convenient because a report can be designed without parameters and simply run with different
selected sets to get different output. But it also means that Queries need to be run to get data into
the selected set for every table used in the report.

A report can also be written to use any data in the local database, regardless of whether it is in the
selected set. To do this, put the word REAL before the table name in the FROM clause of the
report query. A query can have a mix of REAL tables and standard tables.

When a report is run on the national database there is no selected set, so all tables act as if they
had REAL on them. Since the national database is very large, it is important to plan reports

 NASIS CVIR Language Manual – Release 6.0 8

carefully to avoid excessive run time and output. A report designed to work on the selected set is
probably not appropriate for the national database. The PARAMETER statement should be used

 NASIS CVIR Language Manual – Release 6.0 9

CVIR Syntax Reference

Conventions used in this Guide

CVIR script statements are arranged alphabetically in this technical guide so you can find them
more easily. The description consists of the following parts:

Syntax: The syntax is described in a formal notation, using the following conventions:

• Braces { } enclose a set of alternatives, of which one must be chosen.

• Any portion of a definition in brackets [] is optional.

• When an ellipsis (...) follows the brackets, the optional part can be repeated.

• The symbol ⇒ means “is defined as”, and defines a term that appears in a previous
statement definition.

• Punctuation in bold print is a required part of the statement.

• Keywords in the CVIR language are shown in sans-serif capital letters (like DEFINE),
but the interpreter is not case sensitive for keywords or variable names.

Used In: The Used In line identifies the type of scripts in which the statement may be used. The
types are Report, Subreport, Property, and Calculation (Validation scripts use the same
statements as Calculations).

Example: One or more examples of the statement are shown, followed by an explanation.

ACCEPT Statement

 NASIS CVIR Language Manual – Release 6.0 10

ACCEPT

Syntax:

ACCEPT variable [, variable]

variable ⇒ name

Used In:

Subreport, Property, Calculation

Example:
ACCEPT datamapunit_iid.
ACCEPT top_limit, bottom_limit.

The ACCEPT statement defines variables that are passed into the script. These variables
can be used in expressions to calculate values for other variables. They can also be used
in the WHERE clause of a query by writing $name, where name is the name of the
variable. This creates a parameterized query, as discussed under EXEC SQL.

The first example of the ACCEPT statement could be used in a subreport. The value of a
key column such as datamapunit_iid might be passed by a higher level report, and the
subreport would use it in a query to find data related the to data mapunit being processed
in the higher level report.

The second example might be used in a Property script. In this case two variables are
passed by some script that calls the property, and could be used to perform some
calculation in the property script. Any variable names may be used because they do not
refer to database columns.

The number of parameters passed by the caller must equal the number of variables in the
ACCEPT list. The type and dimension of these variables are not predefined, so they are
determined by the values passed by the caller. For a Property, the primary key column of
the base table acts as if it were in the ACCEPT list, even if the property script has no
ACCEPT statement. It is used to ensure that the property is providing data for the same
record as the script that calls it. Consequently, a calling script and its called property
scripts must use the same base table.

BASE TABLE Statement

 NASIS CVIR Language Manual – Release 6.0 11

BASE TABLE

Syntax:

BASE TABLE table-name .

Used In:

Report, Property, Calculation

Example:
BASE TABLE component.

When a CVIR script and its associated properties have several database queries,
automatic coordination is performed between the queries by specifying a BASE TABLE.
For example, if the base table is Component, the automatic coordination assures that each
query provides data for the same component during a cycle of the script. A report script
requires a base table if the script includes an ACCEPT statement, more than one query,
or DERIVE statements.

In a report script the processing cycle is determined by the aggregation specifications in
the first report query, but the base table provides the key used to synchronize queries and
properties. For example, the first query may include a statement like:

AGGREGATE ROWS muiid, coiid

Here the component id (coiid) is the lowest level of aggregation, so the report performs a
cycle for each component. Normally the base table for this report, if needed, would also
be component. Deviation from this norm is an advanced report capability which requires
careful testing to see that the report works correctly.

A Calculation/Validation script differs from a report in that it performs one complete
execution for each base table row that has been selected by the user and has been checked
out for editing. It accepts key input values from the current

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 12

DEFINE

Syntax:

DEFINE variable [expression] [, expression]… [initialization] .

ASSIGN variable expression [, expression]… .

expression (see next page)

initialization (see next page)

Used In:

Report, Property, Calculation

Example:
DEFINE status CODENAME (mustatus).
ASSIGN status status || “ mapunit”.

The DEFINE statement defines a variable for use in a CVIR script. Each defined
variable name must be unique within a script, and must be different from the names of
columns in the input queries. The ASSIGN statement recalculates the value of a variable
that was defined in a previous DEFINE, DERIVE, or EXEC SQL statement.

Names of variables may be any combination of letters, numbers and the underscore
character provided that the name starts with a letter and is not the same as one of the
reserved words in the language. Reserved words are printed in sans-serif CAPITALS in
this document. Different scripts may use the same variable names but the variables are
independent, even if one script calls another via a DERIVE statement. There is one
restriction on variable names for Properties that are used in interpretations. Evaluations
take their input data from variables named “low”, “rv”, and “high” (or just “rv” if the
property modality is RV). A Property called by an Evaluation can use other variables for
intermediate results, but has to place its final results in variables with these names.

Each variable is given a value by an expression or a list of expressions separated by
commas. An expression may be based on literals, columns from the input, or other
variables. When a list is used, the listed values are combined into an array, just as if an
APPEND operation were specified. On each cycle of the input, all variables are
recalculated in the order that they appear in the DEFINE and ASSIGN statements.
Variables are not explicitly typed, so the data type is determined by the result of the
expression.

An initial value for a variable can also be specified in the DEFINE statement. A variable
defined with an initial value and no expression is simply a constant; its value will not be
changed. Only a single initial value can be specified, not a list of values.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 13

An important use for an initial value is with an expression that contains the variable being
defined. Consider the statement: DEFINE list (list || name) INITIAL “Names: ”. This
takes the column “name” from each input record and concatenates it to the variable “list”,
following the initial string “Names: ”. If no initial value is defined with this type of
expression, the variable starts out with a null value, which could produce undesirable
results.

Storing Multiple Values in a Variable

A variable may hold a single value or multiple values. The number of values that a
variable holds is called its dimension. Multiple valued variables are sometimes referred
to as arrays. They can be created in a number of ways:

• With an AGGREGATE clause in an EXEC SQL statement.

• From a Property called by a DERIVE statement.

• From a list of values or expressions in a DEFINE statement.

• By using the APPEND operator.

Depending on the aggregations and other operations used, the variables in a report can
end up with different dimensions. Some operators, such as LOOKUP and WTAVG, can
cause a report to fail if the dimensions of their arguments are not the same. So attention
must be paid to the way multiple valued variables are processed.

Most of the operators used in expressions do not change the dimension of the data. If an
operator uses two or more variables of different dimensions, the result will generally have
the largest dimension of the arguments. For example, multiplying a variable with values
(1,2,3,4) by the single value 5 produces the multiple valued result (5,10,15,20).

A query that finds no rows results in variables with a dimension of 0, which are typically
treated the same way as null values. If all the arguments to an operator have dimension 0
the result will also have dimension 0, but if there is a mixture of zero and non-zero
dimensions, the result has the larger dimension. In the above example, multiplying the
array (1,2,3,4) by a variable with no values would produce an array of four nulls.

Operators that do not follow these rules are noted in the individual descriptions below.
Examples are the array operators like ARRAYSUM that reduce an array of values to a
single value.

Expression Syntax

The following syntax rules define all the types of expressions that may be created.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 14

expression

literal
element
variable
arithmetic_ expression
conditional_ expression
boolean_ expression
string_ expression
regroup_ expression
function
 expression

⇒

()

initialization ⇒ INITIAL literal

literal ⇒ { number | “string” }

arithmetic_ expression
expression { | | | | } expression

 expression⇒
−

+ - * / **

conditional_ expression
expression expression expression
 IF expression THEN expression ELSE expression⇒

? :
[]

boolean_ expression

comparison
ISNULL expression
NOT boolean_ expression
ANY expression
ALL expression
 boolean_ expression

boolean_ expression { AND | OR } boolean_ expression

⇒

()

()

expression

IMATCHES
MATCHES

>=
<=
>
<
=!

==

 expression comparison

⇒

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 15

string_ expression

expression
expression expression
CLIP expression
UPCASE expression
LOCASE expression
NMCASE expression
SECASE expression
TEXTURENAME expression
GEOMORDESC expression expression expression
STRUCTPARTS expression expression expression
ARRAYCAT expression delimiter

⇒

[:]
||

()
()
()
()
()

()
(, ,)
(, ,)

(,)

number number

regroup_expression ⇒ REGROUP expression BY expression
AGGREGATE aggregate_function

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 16

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 17

Explanation of Expression Syntax

An expression can produce either a numeric or a character string value, depending on its
contents. Numeric and character data can be mixed in expressions, and the data will be
converted to the appropriate type if possible. If a conversion is not possible (such as
trying to convert “abc” to a number) an error message will be produced.

Expressions are evaluated in order of operator precedence, where higher precedence
operations are performed before lower precedence operations. For example, the
arithmetic expression: A + B * C

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 18

String Expressions

String expressions allow for substring extraction, string concatenation, and case changes.
They expect to operate on character type input, and will convert the input to character if
necessary. Note that when a number is converted to a string it is expressed with 6
decimal places. To produce different formats for numbers, use the SPRINTF function.
The results of the following string expressions are always character strings:

expression [n1:n2]

Returns a substring of the string expression, starting at position n1 for a length of
n2 characters. The first character of the string is position 0. Note, this differs
from the way substrings are defined in SQL queries.

Example: if variable A has the value “Sample”, the expression A[1:3] returns the
value “amp”.

expression || expression

Concatenates two strings.

Example: the expression “ABC” || “DEF” produces the string “ABCDEF”. If one
expression in a concatenation is null it is treated as the string “”, so the result is
not a null value unless both of the expressions are null.

CLIP (expression)

Removes trailing blanks from a string. This is not normally necessary because
NASIS removes trailing blanks when reading data from the database.

Example: the expression CLIP(“ABC ”) produces the string “ABC”.

UPCASE (expression)

Converts a string to upper case.

Example: the expression UPCASE(“ABc12”) produces the string “ABC12”.

LOCASE (expression)

Converts a string to lower case.

Example: the expression LOCASE(“ABc12”) produces the string “abc12”.

NMCASE (expression)

Converts a string to “name” case: first letter of each word upper case and the
remainder lower case.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 19

Example: the expression NMCASE(“now is the time”) produces the string “Now
Is The Time”.

SECASE (expression)

Converts a string to “sentence” case: first letter of the string upper case and the
remainder lower case.

Example: the expression SECASE(“now is the time”) produces the string “Now
is the time”.

TEXTURENAME (expression)

Converts a set of texture codes to a special string format used in reports. The
expression used by TEXTURENAME can have zero or more values, each of
which is a string used as a code value for the NASIS data element “texture”. This
element can contain a mixture of codes for texture classes, modifiers, and terms
used in lieu of texture. The codes are expanded and concatenated together, with
commas as necessary, to produce a texture description as used in manuscript
reports.

Example: if the variable T has two values, one of which is “SL”, and the other is
“SR- CL GR-SIL”, the expression TEXTURENAME(T) produces a result with
two values, the string “sandy loam”, and the string “stratified clay loam to
gravelly silt loam”.

GEOMORDESC (expression, expression, expression)

Converts data from the component geomorphic description to a standard landform
description string for use in reports. The three expressions used as input can be
arrays, but all must have the same number of values. The first parameter is the
feature name or names for a component, the second has the feature Id for each
feature, and the third has the Exists-On reference for each feature. Where an
Exists-On reference matches a feature ID, the two names are combined with the
word “on”. If two features have the same feature ID the Exists-On reference is
attached to both and they are output as separate strings. Other features that do not
have an Exists-On relationship are output as separate strings. The number of
values in the result can be more or less than the number of values in the input
expressions.

Example: Data for this operation would be obtained by joining the component
geomorphic description table and the geomorphic feature table, such as:
EXEC SQL
SELECT geomorph_feat_name, geomorphic_feat_id,
exists_on_feature
FROM component, component_geomorph_desc, real
geomorph_feature

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 20

WHERE JOIN component TO component_geomorph_desc
AND JOIN component_geomorph_desc TO geomorph_feature;
AGGREGATE COLUMN geomorph_feat_name NONE, geomorphic_feat_id
NONE, exists_on_feature NONE.

Assume this query produces the data shown in the following table:

geomorph_feat_name geomorphic_feat_id exists_on_feat

alluvial fan

till plain 1

pothole 2 1

The expression GEOMORDESC(geomorph_feat_name, geomorphic_feat_id,
exists_on_feat) would produce a result with two values, “alluvial fan” and
“pothole on till plain”.

STRUCTPARTS (expression, expression, expression)

Converts data from the Pedon Horizon Soil Structure table to a standard structure
description string for use in reports The parameters are used in the same manner
as the GEOMORDESC function above. The first parameter would be the type of
structure, usually a string concatenated from structure_grade, structure_size, and
structure_type. The second parameter is the row identifier, structure_id, and the
third parameter is the reference column, structure_parts_to. The only difference
between GEOMORDESC and STRUCTPARTS is that the latter uses the words
“parting to” to separate linked structures, instead of “on”.

ARRAYCAT (expression, delimiter)

Concatenates the values in a multiple valued variable or expression, to produce a
single valued result. The first argument is a multiple valued expression, and the
second argument is a string to be used as a delimiter between the values. An
empty string may be specified as the delimiter. If any values of the first argument
are null, they and their associated delimiters are skipped. The result has
dimension 0 if the first argument has dimension 0, otherwise it has dimension 1.

Example: If the variable A has four values, “A1”, “A2”, Null, and “A4”, the
expression ARRAYCAT (A, “-”) would produce a single string: “A1-A2-A4”.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 21

Function Expressions

The following function expressions can use either character or numeric values, and
produce results in the same type as the input, unless specified otherwise.

NEW (expression)

Returns True (1) if the value of the expression is different from the value it had in
the previous cycle of the script, or False (0) if the value is the same.

Example: the expression NEW (mapunit_symbol) will be True each time the
mapunit symbol changes.

CODENAME (expression [, name])

Returns the code name for the code value given by expression, using the data
dictionary domain of the element name. The name must be a data element name
or its alias from an EXEC SQL statement. The value of the expression must be a
number representing the internal identifier for a code. This is the value normally
returned by a query. If expression is the same as name you do not have to specify
it twice.

Example: if the variable compkind were returned from a query, the expression
CODENAME(compkind) would produce a string normally displayed in NASIS
for that data element, such as “series”. Code names are generally in lower case.
The expression CODENAME(val, compkind), where val is a variable from a
DEFINE statement, would produce the code name for a compkind whose value is
in the variable val.

CODELABEL (expression [, name])

Returns the code label for the code value given by expression, using the data
dictionary domain of the element name. This operates just like CODENAME.
The code label is typically the same as the code name but is capitalized properly
for use in reports.

Example: in the above example, the expression CODELABEL(compkind) would
produce “Series”.

APPEND (expression [, expression] …)

Combines the values from multiple variables or expressions into a single variable.
If the first expression has dimension n and the second expression has dimension
m, the result of APPEND has dimension n+m and contains all the values from the
first expression followed by the values from the second. This can be extended to
any number of expressions separated by commas. If an expression has dimension
0, it does not add anything to the result.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 22

Example: if the variable A has three values, 1, 2, and NULL, and the variable B
has the value 3, the expression APPEND(A,B) would have four values: 1, 2,
NULL, 3.

ARRAYCOUNT (expression)

Counts the number of non-null values in a multiple valued expression. It can
operate on either a character or numeric argument, and will return a single
numeric value of zero or more.

Example: if the variable A has three values, 1, 2, and NULL, the expression
ARRAYCOUNT(A) would produce the result 2.

ARRAYMIN (expression)

Computes the minimum of the values in a multiple valued expression. It can
operate on either a character or numeric argument, and will return a single value
of the same type as its argument. In this case, a null value is not considered to be
smaller than a non-null value. The result is null only if all values of the array are
null. The result has dimension 0 if the original expression has dimension 0,
otherwise it has dimension 1.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYMIN(A) would produce the result 1.

ARRAYMAX (expression)

Computes the maximum of the values in a multiple valued expression. It can
operate on either a character or numeric argument, and will return a single value
of the same type as its argument. The result is null only if all values of the array
are null. The result has dimension 0 if the original expression has dimension 0,
otherwise it has dimension 1.

Example: if the variable A has three values, “X”, “Y”, and “Z”, the expression
ARRAYMAX(A) would produce the result “Z”.

ARRAYMEDIAN (expression)

Locates the median value in a multiple valued expression, by sorting the non-null
values and selecting the middle one. It can operate on either a character or
numeric argument, but there is a slight difference in operation between the two.
When there is an even number of values there is not a single middle value, so with
numeric data the median is the average of the two middle values, and with
character data the median is the larger of the two. The result is null only if all
values of the array are null. The result has dimension 0 if the original expression
has dimension 0, otherwise it has dimension 1.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 23

Example: if the variable A has three values, “X”, “Y”, and “Z”, the expression
ARRAYMEDIAN(A) would produce the result “Y”.

ARRAYMODE (expression)

Finds the modal value in a multiple valued expression by counting the
occurrences of each distinct value and returning the value that occurs most often.
In case of a tie, the smallest value is returned. It can operate on either a character
or numeric argument, and will return a single value of the same type as its
argument. The result is null only if all values of the array are null. The result has
dimension 0 if the original expression has dimension 0, otherwise it has
dimension 1.

Example: if the variable A has four values, 2, 3, 5, and 3, the expression
ARRAYMODE(A) would produce the result 3.

ARRAYSHIFT (expression, expression)

Shifts the values in the first argument, which is a multiple valued variable, by the
number of positions specified in the second argument, which has a single value.
If the second argument (call it “n”) is positive, the values are shifted “up”, so that
the value that was in position 1 moves to position n+1, and so on until the last n
values are discarded. The first n array positions are assigned a null value. If the
second argument is negative, the values are shifted in the opposite direction. The
result has the same data type and number of values as the first argument.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYSHIFT(A, -1) would produce a result with three values, 2, 3, and Null.

ARRAYROT (expression, expression)

Operates like ARRAYSHIFT but performs a rotation of the values in the first
argument. Values shifted off one end of the array are moved onto the other end.
If the number of positions shifted is greater than the number of values, the effect
is to perform more than one rotation, or a rotation modulo the dimension.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYROT(A, -4) would produce a result with three values, 2, 3, and 1.

LOOKUP ([expression,] expression, expression)

Selects values from an array based on an index or condition. With three
parameters, the first expression is the key, which must be a single value, and the
second expression is the index array. The key and the index must have the same
type of data. If the key value is found in the index array, the value from the
corresponding array position in the third expression is returned, otherwise the
result is null. With two parameters, the first expression is evaluated as an array of

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 24

true or false values. If a value is true, the corresponding array position in the
second expression is returned. The result will have the data type of the last
expression.
There is actually a close relationship between the two forms of LOOKUP. These
two expressions produce the same result: LOOKUP(a,b,c) and LOOKUP(a==b,c).
Use whichever form is easier to understand.
If there is more than one match or true value, the result has the values from all
matching/true rows, so it is possible for the result to have more than one value.
The last two expressions must be arrays of equal dimension. A common error is
to mismatch the dimensions of these two expressions, due to differences in the
way they are aggregated.

Example: The variable max_thickness has a single number, the variable
horizon_thickness has 6 numbers, and the variable ph_r has 6 numbers. The
expression LOOKUP (max_thickness, horizon_thickness, ph_r) or LOOKUP
(horizon_thickness==max_thickness, ph_r) would return the value of ph_r from
the horizon whose horizon_thickness value equals the value of max_thickness.

COUNT (expression)

Maintains a running count of the occurrences of the expression. On each cycle of
the script the value of the expression is tested for a null, and if it’s not null the
counter’s value is increased by one.

Example: a variable defined with the value COUNT(musym) could be printed at
the end of a report to show the number of mapunits read (because musym can’t be
null).

MIN (expression)

Finds the smallest value of the expression. On each cycle of the script, the value
of the expression is compared to an internal counter, and replaces the counter’s
value if the expression is smaller. If a null value for the expression is
encountered, the result of MIN becomes and remains null.

Internal counters for the MIN function cannot be reset.

Example: a variable defined with the value MIN(elevation) could be printed at
the end of a report to show the minimum of elevation.

MAX (expression)

Finds the largest value of the expression. On each cycle of the script, the value of
the expression is compared to an internal counter, and replaces the counter’s value

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 25

if the expression is greater. Null values are smaller than any non-null value, so
the result is only null if all input values are null.

Internal counters for the MAX function cannot be reset.

Example: a variable defined with the value MAX(elevation) could be printed at
the end of a report to show the maximum of elevation.

SPRINTF (“format”, expression [, expression] …)

Formats one or more expression values into a character string using the C function
sprintf (same as the Prelude sprintf). The first argument is a format specification,
which must have a single value, and the remaining arguments are expressions
whose values are to be formatted. If any of the expressions are multiple valued,
the result is also multiple valued, and its dimension is that of the expression with
the largest dimension.

It is the user’s responsibility to see that the number and type of the expressions
correspond to the format, as there is no checking performed. Character data
should use the %s formatting code, and numeric data should use the %f or %g
formatting code.

Null values in the expressions produce an unusual result. The formatted value
plus all characters of the format string up to the next % sign are skipped.

Example: The variable name has one character value, “Bob”. The variable
position has two numeric values, 10 and 12. The expression
SPRINTF (“%s:%.f”, name, position) will produce a result containing two
character values, “Bob:10” and “Bob:12”.

USER

The user name from the data dictionary.

Example: if the person running NASIS has the login name “rose”, the expression
USER will return a single character value, “rose”.

TODAY

The current date in mm/dd/yyyy format.

Example: the result of the expression TODAY might be “07/20/1998”.

Numeric Functions

The following function expressions operate on numeric values, and produce numeric
results. If the input values are character strings they are first converted to numbers.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 26

ARRAYSUM (expression)

Computes the sum of the values in a multiple valued expression. It expects a
numeric argument, and will try to convert character values to numbers. It returns
a single numeric value. If individual values of the array are null they are treated
as zeroes. The result is null only if the array has no values. The result has
dimension 0 if the original expression has dimension 0, otherwise it has
dimension 1.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYSUM(A) would produce the result 6.

ARRAYAVG (expression)

Computes the average of the values in a multiple valued expression. It expects a
numeric argument, and will try to convert character values to numbers. It returns
a single numeric value. If individual values of the array are null they are not
counted in the average. The result is null if all values are null. The result has
dimension 0 if the original expression has dimension 0, otherwise it has
dimension 1.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYAVG(A) would produce the result 2.

ARRAYSTDEV (expression)

Computes the standard deviation of the values in a multiple valued expression. It
expects a numeric argument, and will try to convert character values to numbers.
It returns a single numeric value. If individual values of the array are null they are
not included in the computation. The result is null if all values are null. The
result has dimension 0 if the original expression has dimension 0, otherwise it has
dimension 1.

Example: if the variable A has three values, 1, 2, and 3, the expression
ARRAYSTDEV(A) would produce the result 1.

WTAVG (expression, expression)

Computes the sum of the first expression’s values after multiplying each by a
weighting factor, taken from the corresponding value of the second expression,
then divides the result by the sum of the weights. The two expressions must be
arrays of the same dimension. Individual null values are ignored in computing the
average. The result is null if all the individual values are null. The result has
dimension 0 if the original expressions have dimension 0, otherwise it has
dimension 1.

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 27

Example: The variable comppct_r has 3 values (40, 30, 20) and the variable
elev_r has three values (1000, 1200, 900). The expression
WTAVG (elevation, comppct_r) would produce the value 1044.44, which is the
average of the elevation values, weighted by the comp_pct values, or
(1000*40 + 1200*30 + 900*20) / (40 + 30 + 20).

SUM (expression)

Computes a running total of the value of the expression. On each cycle of the
script, the value of the expression is added to an internal counter. The result of
the function is the value of that counter at each cycle. If a null value for the
expression is encountered, the result of SUM becomes and remains null.

Internal counters for the SUM function cannot be reset. If you want to compute
subtotals, use the ASSIGN statement to add the value of the expression to a
defined variable rather than an internal counter. Then a conditional expression
can be used to reset the variable’s value to 0 at the correct time.

Example: a variable defined with the value SUM(acres) could be printed at the
end of a report to show the total of acres.

AVERAGE (expression)

Computes a running average of the value of the expression. On each cycle of the
script, the value of the expression is added to an internal counter, and the result is
divided by the number of values processed. If a null value for the expression is
encountered, the result of AVERAGE becomes and remains null..

Internal counters for the AVERAGE function cannot be reset.

Example: a variable defined with the value AVERAGE(elev_r) could be printed
at the end of a report to show the average of elevation.

LOGN (expression)

Computes the natural logarithm of the expression.

Example: the expression LOGN(10) produces the value 2.302585.

LOG10 (expression)

Computes the base 10 logarithm of the expression.

Example: the expression LOG10(10) produces the value 1.

EXP (expression)

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 28

Computes the exponential (ex) of the expression.

Example: the expression EXP(1) produces the value of e, 2.718282.

COS (expression)

Computes the cosine of the expression interpreted as an angle in radians.

Example: the expression COS(0) produces the value 1.

SIN (expression)

Computes the sine of the expression interpreted as an angle in radians.

Example: the expression SIN(0) produces the value 0.

TAN (expression)

Computes the tangent of the expression interpreted as an angle in radians.

Example: the expression TAN(0) produces the value 0.

ACOS (expression)

Computes the arccosine of the expression, returning an angle in radians.

Example: the expression ACOS(0) produces the value of π/2, 1.570796.

ASIN (expression)

Computes the arcsine of the expression, returning an angle in radians.

Example: the expression ASIN(1) produces the value of π/2, 1.570796.

ATAN (expression)

Computes the arctangent of the expression, returning an angle in radians.

Example: the expression ATAN(1) produces the value of π/4, 0.785398.

ATAN2 (expression, expression)

Computes the angular component θ of the polar coordinates (r, θ) that are
equivalent to the rectangular coordinates (x, y) given by the two expressions. This
is the same as ATAN(y / x).

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 29

Example: the expression ATAN2(5, 5) produces the value of π/2, 1.570796.

SQRT (expression)

Computes the square root of the expression. Returns a null value if the expression
is negative.

Example: the expression SQRT(2) produces the value 1.414214.

ABS (expression)

Computes the absolute value of the expression.

Example: the expression ABS(-10) produces the value 10.

POW (expression, expression)

Computes the value of the first expression raised to the power of the second
expression.

Example: the expression POW(2, 5) produces the value 32.

MOD (expression, expression)

Computes the remainder after dividing the first expression by the second
expression.

Example: the expression MOD(5, 2) produces the value 1.

ROUND (expression [, expression])

Rounds off the value of the first expression to the number of decimal places
specified by the second expression. If the second expression is not used, it is
assumed to be zero, which means round off to the nearest whole number. When
the second expression is a positive number, it specifies the number of places to the
right of the decimal point to be preserved. If negative, it means round to the
specified number of places to the left of the decimal point, as illustrated in the
examples.

Examples: ROUND (15.751, 1) produces 15.8
 ROUND (15.751) produces 16
 ROUND (15.751, -1) produces 20

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 30

REGROUP Expression

The REGROUP expression is used to perform secondary aggregation of data. It
operates a little like the AGGREGATE option in a query and can be used to
perform a second level of aggregation when dealing with a complex data
structure. It uses two expressions, which must be arrays of the same dimension. In
the expression “REGROUP array BY array …” the second array (the “BY” array)
is used as a key for grouping the values from the first array (the data array). The
result is a new array whose dimension is the number of unique values in the “BY”

DEFINE Statement

 NASIS CVIR Language Manual – Release 6.0 31

Example: These examples use the arrays A and B as inputs:

A B

George 4

Abe 4

Sue 5

Sam 8

Mary 8

William 8

The arrays C and D are produced by the statements:

DEFINE C REGROUP A BY B AGGREGATE FIRST.

DEFINE D REGROUP A BY B AGGREGATE LIST “-“.

C D

George George-Abe

Sue Sue

Sam Sam-Mary-William

DERIVE Statement

 NASIS CVIR Language Manual – Release 6.0 32

DERIVE

Syntax:

DERIVE derive_list USING property_call .

derive_list ⇒ variable [FROM identifier] [, variable [FROM identifier]] ...

property_call ⇒ [“site_name” :]“property_name”

 [(argument [, argument] ...)]

argument
variable
element
literal

⇒

Used In:

Report, Property, Calculation

Example:
DERIVE thickness FROM layer_thickness
USING “NSSC_Pangaea”:“LAYER THICKNESS” (0, bottom).

The DERIVE statement invokes a property script to produce values for one or more
variables. Each name listed after the keyword DERIVE becomes a local variable in the
script where it occurs. It is assigned the value of the variable in the property script whose
name follows the keyword FROM. If the names before and after FROM are the same,
the FROM phrase may be omitted. The property must have the same base table as the
calling script, and the scripts are automatically synchronized to return values for the
current row of the base table.

The name of the property must be in quotes, and must match the property name in the
Property table exactly, including case and punctuation. The NASIS site name is optional,
but should be placed before the property name to ensure that the name is unique.

A list of arguments must be given after the property name if the property script has an
ACCEPT statement. The order of the arguments in the DERIVE statement must
correspond to the order of the input variables in the ACCEPT statement.

The arguments can be input column names, variables, or numeric or character constants
in the calling script. However, recall that DERIVE statements are always executed
before DEFINE statements. If an argument is a variable which is computed in a
DEFINE statement, its value will be whatever is left over from the previous script cycle,
even if the DEFINE appears in the script before the DERIVE. For this reason, arguments
for DERIVE should be from an ACCEPT, an EXEC SQL, or constants.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 33

EXEC SQL

Syntax:

EXEC SQL sql-select [sort_specification] [aggregation] .

sql-select ⇒ SELECT [DISTINCT] [TOP n] input_column [, input_column] ...

 FROM table_spec [, table_spec] ...

 [WHERE where_condition [{AND | OR} where_condition] ...]

 [SQL GROUP BY clause] [SQL HAVING clause]

 [{ SQL ORDER BY clause | SQL INTO TEMP clause }] ;

⇒

alias [AS] expression
] alias [AS] [elementmninput_colu

⇒

calNameColumnLogi
icalNameColumnPhys

alNameTableLogic
calNameTablePhysi

.
alias

element

alias ⇒ name

[join]]alias[
_

__
]OUTER[

REAL
EDIT

table_spec

⇒
nmtbl

nmimptbl

⇒

ip_namerelationsh
conditionWHERESQL

BY
 ON

 table_spec JOIN
CROSS

OUTER RIGHT} | {LEFT
INNER

join

⇒
]_BY [table TO table JOIN

itionwhere_cond
nameiprelationsh

conditionSQL WHERE

Used In:

Report, Property, Calculation

Example:
EXEC SQL select areaname, legenddesc, musym, muname
from legend, lmapunit, mapunit, outer area
where join area to legend and join legend to lmapunit
and join lmapunit to mapunit;.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 34

An EXEC SQL statement defines a database query that supplies input to the report
engine. Any database columns or expressions listed in the SELECT clause of the query
may be used as variables in the rest of the script. A script almost always has a query, the
exceptions being reports that get all their data from files, parameters or derived
properties. The primary purpose of the EXEC SQL is to specify which data elements are
necessary for the report.

The EXEC SQL statement is a variation of a standard SQL Select statement. It performs
the same basic function, but has additional capabilities to make report writing easier. The
additional capabilities include:

• Use of NASIS logical column names as well as database column names

• Simplified syntax to specify join conditions

• Extended sort types, such as case insensitive and symbol sort

• More powerful GROUP BY features in the AGGREGATE clause, including
independent aggregation by column, and crosstab formatting.

A SQL Select statement begins with a SELECT clause. It has a list of database columns
or expressions, following normal SQL syntax, and each column must have a unique
name. If expressions are used in the select list, an alias must be used with the expression
to provide a unique name. Besides allowing most standard SQL expressions, NASIS
permits the functions CODENAME, CODELABEL, CODESEQ and CODEVAL with
data elements that are stored as codes. These functions cause the query to return the
name, label, sequence, or internal value for a code. If none of these functions is used the
query returns the internal value.

The word DISTINCT following the word SELECT removes duplicate rows from the
query results. If the combination of the values of all items listed in the SELECT clause is
duplicated, only one occurrence will be produced. (In prior versions of NASIS the word
UNIQUE could be used instead of DISTINCT, but this is no longer allowed in SQL).

The phrase TOP n following the word SELECT is a SQL feature that allows you to
specify the maximum number of records to be returned from a query. The records are
sorted on the columns specified in the ORDER BY clause, then up to "n" of them are
used as report input. This is handy to use while testing a report.

The FROM clause specifies all the tables used in the query, and may specify aliases and
joins. Table names used in a FROM clause must be defined in the NASIS data dictionary
or in an INTO TEMP clause of a prior query. Aliases can also be used with table names,
to provide a shorter name or to make the name unique.

A CVIR script is designed to search either the selected set or the full local database,
depending on its type. Normally, reports search the selected set only, while calculations
and properties search the whole local database. The keyword EDIT or REAL in the
FROM clause is used to override the table search behavior on a table by table basis. If

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 35

the keyword EDIT is used only the selected set will be read, and if REAL is used the
whole local database is read. If a report is run on the national database, the EDIT or
REAL option is ignored and the whole national database is read.

The FROM clause can also contain specifications for joining tables using current SQL
syntax (as well as the older syntax based on Informix). The newer style of join puts all the
join conditions in the FROM clause, as in these examples:
FROM datamapunit inner join component by default
FROM datamapunit left outer join component on dmuiid=dmuiidref

For a complete discussion of this kind of join you’ll have to find a SQL manual or class.
Some of the key points are:

• When the join conditions begin with ON, standard SQL syntax applies. You must
specify the exact columns to be matched in each of the tables. You can also add
more conditions beyond just the key columns.

• When using the BY condition you specify a relationship name defined in the
NASIS data dictionary. In most cases the relationship name is “default”. If more
than one relationship exists between a pair of tables you must use the correct
name. The Info page for a table in NASIS will list the relationship names.

Advanced Note: There is an important case when this type of join must be used, and
it’s related to a difference between Informix and SQL Server. This is when an outer
join is used and you need to apply additional selection criteria to the outer (not
required) table. These criteria operate differently if they are in the FROM clause or
the WHERE clause. Here are two examples:
A. FROM component left outer join comonth by default

and ‘month’ = ‘jan’

B. FROM component left outer join comonth by default

where ‘month’ = ‘jan’

Query A will produce a row for a Component that does not have a January in the
Component Month table, but B will not. The reason is that the WHERE conditions
are applied to the result of the join. In B, each Component will be joined up with its
Component Month rows (if any), and then only those with January will be selected. In
A, the selection of January records occurs during the join process. If there are none,
the outer join applies and the Component is included in the output even though there
is no matching Component Month.

If you don’t use the above type of join, the WHERE clause may use the “JOIN table TO
table” syntax as in NASIS 5. The two tables in a JOIN condition must have a relationship
recorded in the data dictionary. In this form the BY phrase can be omitted as long as only
one relationship exists between the two tables. You can also use the word OUTER in the
FROM clause in combination with this type of join specification. NASIS will internally
convert it to the new style join.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 36

Subqueries are also allowed in the WHERE clause, following SQL syntax with the
extensions just described. It is permissible to use a JOIN condition between a table listed
in the main query and a table listed in the subquery, which is a convenient way to create a
coordinated subquery. Refer to SQL references for more information about subqueries.
This is an advanced query topic.

The expressions in the WHERE clause may use variables defined in a PARAMETER
statement, an ACCEPT statement or a prior query. The CVIR engine will plug in the
values of such variables at the time the query is executed. If the variable is preceded by a
dollar sign, such as $name, the SQL query becomes a parameterized query. A
parameterized query does not use the automatic query coordination specified by the
BASE TABLE statement. The selection is controlled by the parameter value instead.
With this technique a report can have a mix of queries with different aggregation levels.
Examples can be found in the Mapunit Description reports.

Following the WHERE clause, the GROUP BY, HAVING, and ORDER BY clauses can
be used with the normal SQL syntax. The INTO TEMP clause may also be used
(provided the ORDER BY is not used) to direct the results of the query into a temporary
database table. Subsequent queries in the same script or in subreport scripts can read from
the temporary table as if it were a normal NASIS table. The column names in the
temporary table are the column names (or aliases) from the SELECT clause. A query with
an INTO TEMP clause should not be the only query in a report because it does not return
any data that the report can use.

NASIS tables and columns may be called by either the logical name or the physical name,
but must use the same name wherever referenced. A column name can be used alone if it
is unique, otherwise the table name must be given also. If an alias is used for an column
in a SELECT clause, that alias must be used everywhere instead of the column name. If
the column is modal, the suffix (such as _l or _h) must be included in the name. The
value from each column is converted into either a character string or a floating point
number for use in later calculations. Numeric data elements, such as Int, Decimal, and
Float, and Code elements, are converted to floating point, and everything else, including
dates, is converted to character strings.

A semicolon is required to end the SQL portion of the EXEC SQL statement. Optional
sort and aggregation clauses may follow the semicolon, and the whole statement is ended
with a period. If neither the sort nor aggregation is used, both a semicolon and a period
are still required.

A script may contain more than one query, in order to collect data from different
hierarchic paths in the database. These types of data often cannot be retrieved in a single
query without creating undesirable cross products. By using separate queries and
aggregating the results, the data can be “de-normalized” so that data from separate paths
appear as if they were repeating groups in the base table.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 37

EXEC SQL: Sort Specification

Syntax:

sort_specification ⇒ SORT [BY] sort_key [, sort_key] ...

⇒
VE]INSEN[SITI

SYM[BOL]
LEX[ICAL]

G]DESC[ENDIN
]ASC[ENDING

 name sort_key

Example:
EXEC SQL select areaname, legenddesc, musym, muname,
lmapunit.seqnum
from legend, lmapunit, mapunit, outer area
where join area to legend and join legend to lmapunit
and join lmapunit to mapunit;
SORT BY areaname, lmapunit.seqnum DESC, musym SYMBOL.

SORT is an optional clause that may be added to a query to direct the CVIR engine to
sort the records. Either the ORDER BY (which causes the database engine to do the
sorting) or the SORT may be used, and the SORT takes precedence. The SORT clause
is slower but provides more options than ORDER BY. The sort key names in the SORT
clause must be column or alias names used in the SELECT clause (column numbers are
no longer allowed). The direction of sorting (ascending or descending) can be specified
for each sort key, with the default being ascending. The type of sort can also be specified
as lexical (like a dictionary), symbol (used for symbols containing both letters and
numbers), or insensitive (ignore upper and lower case distinctions). The default sort type
is the one specified in the data dictionary for the column. The sort order and type
keywords may be abbreviated as shown.

The difference between SORT and ORDER BY is important when the TOP n condition
is used in the SELECT clause. ORDER BY, since it is performed by the database engine,
happens before the "top n" records are selected, and SORT happens after. It could even
be useful to specify different columns in ORDER BY and SORT, because the first
controls which records appear and the second controls the order in which they print.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 38

EXEC SQL: Aggregation Specification

Syntax:

aggregation ⇒ AGGREGATE [ROWS [BY] identifier [, identifier] ...]
[COLUMN identifier [aggregate_function]
 [, identifier [aggregate_function]] ...]
[CROSSTAB [BY] identifier [value_specification]
 [LABELS “string” [, “string”] ...]
 CELLS identifier [, identifier] ...] .

identifier
element
alias

⇒

aggregate_ function

SUM
AVERAGE
FIRST
LAST
MIN
MAX
LIST ["string"]
NONE
UNIQUE

 [GLOBAL]⇒

()
()

value_ specification
VALUE[S] field_ value [field_ value] ...

INTERVAL[S] field_ value [field_ value] ...
⇒

,
,

field_value ⇒ literal

Example:
EXEC SQL select musym, muname, areaname,
mapunit_area_overlap.area_overlap_acres acres
from mapunit, mapunit_area_overlap, laoverlap, area
where join area to laoverlap
and join laoverlap to mapunit_area_overlap
and join mapunit to mapunit_area_overlap;
SORT BY musym SYMBOL, areaname
AGGREGATE ROWS BY musym
COLUMN muname UNIQUE, acres SUM
CROSSTAB areaname CELLS acres.

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 39

The aggregation clause specifies how the input records are to be grouped, and what to do
with the data in each group. The identifiers in the aggregation clause are names of
columns in the query. A query without an aggregation clause uses no aggregation,
meaning that rows of data are used one at a time exactly as they come from the query.
The aggregation clause has somewhat different effects for a parametric query. This
variation is described later, after the basic aggregation process is described.

The ROWS specification defines the input grouping. It can be used only in the first
query of a report, to define which set of input columns controls the report’s processing
cycle. In all other queries, cycling has to occur at the base table, so ROWS is not used.
In particular, for Property and Calculation scripts, aggregation occurs at the base table, so
no ROWS specification is allowed.

When ROWS is used, the query must be sorted on the columns listed after ROWS.
Each unique combination of values in this set of columns starts a new cycle. Without the
ROWS list, each base table record starts a new cycle. There may be one or more records
returned by the query in each cycle. Multiple input values in each column are combined
according to the aggregation rules, to produce single values or arrays that can be used in
further calculations or report output. The behavior of row aggregation is illustrated in the
following example. Suppose a query includes specifications to SORT BY musym
AGGREGATE ROWS BY musym. Rows with the same musym will define the report
cycle. Each group of rows with the same musym is one cycle, thus this example has eight
rows, but only three cycles.

musym compname comppct_r

12A Hamerly 80

12A Vallers 15

12A Hamre 5

26B Windsor 90

26B Deerfield 10

130C Dacono 85

130C Satanta 10

130C Altvan 5

Aggregation rules for each column can be specified after the keyword COLUMN. The
default aggregation is UNIQUE for columns that have no aggregation specified. This
means that when the value in a column is the same for every row in a report cycle, only
one value is returned for that column. If more than one value occurs in a cycle, an array
is formed to return values for the column. Each distinct, non-null value is placed in a

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 40

separate position of the array. The number of positions in the array (the dimension) can
vary from one cycle to the next and from one column to another within a cycle.

The aggregation function NONE is similar to UNIQUE except that it does not eliminate
duplicate or null values. If there is more than one input row in a cycle, the value from
each row is placed in a separate array position. For each cycle, every column with NONE
aggregation will have the same dimension, and the values will be in the order of the input
records.

The other aggregation functions are used to reduce multiple values for a column to a
single value. The aggregations have no effect when only one record occurs in a cycle.
The types of aggregation are:

SUM Computes the sum of the column’s values.

AVERAGE Computes the average of the column’s values.

FIRST Select the value from the first record of the group (useful only if
the input is sorted on this column).

LAST Select the value from the last record of the group.

MIN Selects the smallest of the column’s values.

MAX Selects the largest of the column’s values.

LIST Concatenates the values (converted to character strings if numeric)
into a single string with a delimiter between each value. If a quoted
string is specified after the word LIST, that string is the delimiter,
otherwise a comma and space are placed between each value.

Given the example above, suppose the query includes specifications to AGGREGATE
ROWS BY musym COLUMN compname LIST, comppct_r SUM. Since aggregation for
musym is not specified, the default aggregation of UNIQUE will be applied to that
column to produce the following results. Note that the values in each column have been
reduced to a single valued expression for each cycle.

musym compname comppct_r

12A Hamerly, Vallers, Hamre 100

26B Windsor, Deerfield 100

130C Dacono, Satanta, Altvan 100

The keyword GLOBAL may be used after the aggregation type for a column. This causes
that particular column to be aggregated over the entire set of input data, rather than one
cycle. The values for that column remain constant for the whole report. One use for

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 41

global aggregation is to find data for report headings. If the first input cycle is missing
some data needed in a heading, a global aggregation can find the first occurrence, or all
unique occurrences of the data before the report processing actually begins. Global
aggregation can be used with or without crosstabs.

The crosstab is a special type of aggregation that assigns values to positions in an array
based on the value of a controlling column. It requires a CROSSTAB column, and one
or more CELLS columns. These columns become arrays, but their dimension is
determined not by the number of input rows in a cycle, but by the number of values for
the crosstab. This dimension is constant for the entire query. The crosstab values are
defined by the VALUES list, the INTERVALS list, or by default. The default is to use
all the unique values found in the input for the crosstab column.

When doing a crosstab, for each cycle of the input, the arrays of values for the CELLS
columns are first set to nulls. Then, for each input record, the value in the CROSSTAB
column is examined. If it is one of the values in the VALUES list or the default list, or if
it falls within one of the ranges in the INTERVALS list, its position in the list is noted.
For each of the columns in the CELLS list, the value from the input record is placed in
that position of the column’s array.

Within a cycle, the value of the crosstab column may repeat. If so, only one value can be
stored in an array position for a cell, so the cell’s aggregation function is applied. If a cell
has no aggregation, a data row is returned for each unique value. In each such data row,
all aggregated columns will have constant values. The operation of crosstab can be
illustrated using the following example data:

musym muname areaname acres

10A Alpha loam, 0 to 3 X 100

10A Alpha loam, 0 to 3 X 200

10A Alpha loam, 0 to 3 Y 300

10A Alpha loam, 0 to 3 Z 400

10A Alpha loam, 0 to 3 Z 500

10B Alpha loam, 3 to 6 X 600

10B Alpha loam, 3 to 6 Y 700

10B Alpha loam, 3 to 6 Y 800

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 42

This table shows a small sample of input data from the example query above. The first
case shows the results of a crosstab without aggregation of the crosstab cells:

AGGREGATE ROWS musym COLUMN muname UNIQUE
CROSSTAB areaname CELLS acres.

musym muname areaname acres

10A Alpha loam, 0 to 3 X Y Z 100 300 400

10A Alpha loam, 0 to 3 X Y Z 200 500

10B Alpha loam, 3 to 6 X Y Z 600 700

10B Alpha loam, 3 to 6 X Y Z 800

In this example the column “musym” controls row aggregation. Column “muname” has
the UNIQUE aggregation, so it maintains the values that correspond to each value of
“musym”. Notice that if “muname” does not repeat at the same frequency as “musym”, it
will become an array.

The columns “areaname” and “acres” become arrays of three positions each, because the
crosstab column, “areaname”, has three distinct values in the input sample. The values
placed in “areaname” are constant, namely the column grouping values “X”, “Y”, and
“Z”. The cell column, “acres”, contains the acreage values for the corresponding position
of “areaname”. Because there are multiple acreage values for each area in this example,
the result has two rows for each symbol.

By adding an aggregation function to the “acres” columns, the crosstab produces just one
row for each cycle defined by the ROWS condition, as in the following example:

AGGREGATE ROWS musym COLUMN muname UNIQUE, acres SUM
CROSSTAB BY areaname CELLS acres

musym muname areaname acres

10A Alpha loam, 0 to 3 X Y Z 300 300 900

10B Alpha loam, 3 to 6 X Y Z 600 1500

When INTERVALS are used for a crosstab, the list of field values must be numbers, in
an increasing order. The number of intervals is one more than the number of values. If
the intervals are specified as: CROSSTAB BY x INTERVALS (n1, n2, n3), the
crosstab will place the cell data into one of 4 array positions based on the value of the
variable x:

 x <= n1 n1 < x <= n2 n2 < x <= n3 n3 < x

EXEC SQL Statement

 NASIS CVIR Language Manual – Release 6.0 43

The LABELS specification can specify column headings for a report, which would
otherwise be the field values for the CROSSTAB BY column. See the discussion about
array specifications and column specifications under the SECTION statement for more
information about formatting and printing cross tabulated data.

Note on parameterized queries.

When a parameterized query is used (i.e., a query containing $name references) a global
aggregation is performed on all columns, and no ROWS clause is allowed. A global
aggregation simply means that the whole output of the query is considered to be a single
cycle. The column aggregation types are used as described above. It is not advisable to
use a CROSSTAB with a parameterized query, because a crosstab can generate more than
one set of data for each aggregation group. Only the first such set of data would actually
be available in the CVIR script.

A parameterized query performs a global aggregation even if no aggregation clause is
used. In this case, the default column aggregation rule is NONE.

FONT Statement

 NASIS CVIR Language Manual – Release 6.0 44

FONT

Syntax:

FONT “font name” .

Used In:

Report

Example:
FONT “Courier”.

This statement has no function in NASIS 6 and is ignored. NASIS does not have control
over the font used to display a text style report when it is opened in an application of the
user’s choice. In an application like Notepad it is recommended that you use a Courier
font so that the output will look like it did in NASIS 5. For HTML style reports the font is
controlled by the style sheet or by attributes of the HTML tags.

HEADER & FOOTER Statements

 NASIS CVIR Language Manual – Release 6.0 45

HEADER and FOOTER

Syntax:

HEADER [INITIAL]

 line-specification ...

END HEADER .

FOOTER [FINAL]

 line-specification ...

END FOOTER .

Used In:

Report (text style only)

Example:
HEADER
AT CENTER “Sample Report”.
SKIP 2 LINES.
END HEADER.

Defines the headers and footers for the report. There are four types of header/footer
statements, and a report may contain no more than one of each type. All are optional.
The default for HEADER and FOOTER is to print nothing. The default for HEADER
INITIAL or FOOTER FINAL is to print the HEADER or FOOTER, respectively.

The regular header and footer are printed at the top and bottom, respectively, of each
report page. The initial header and final footer are printed only once, at the beginning
and end of the report instead of the regular header and footer. At the end of the report, if
there is not enough room for the final footer (which could happen if the final footer uses
more lines than the regular footer), the regular footer is printed on the last page of data,
then the final footer is printed on a separate page. Each header or footer contains one or
more line specifications as defined below (except for NEW PAGE commands). The text
of headers and footers is generated one time, at the beginning of report execution, and
reprinted at the top of each page. Page numbers, if included in headers and footers, will
be substituted correctly. Data from the database used in headers or footers will come
from the first input record only.

INPUT Statement

 NASIS CVIR Language Manual – Release 6.0 46

INPUT

Syntax:

INPUT input-list FILE filename [DELIMITER “string”] [sort-specification]
[aggregation] .

 input-list ⇒ input-column [, input-column] ...

input-column ⇒ name [CHARACTER | NUMERIC] [alias]

filename ⇒ “string” [/ “string”] …

Used In:

Report, Property, Calculation

The INPUT statement reads data from a file into CVIR variables. Each column name in
the input-list (or alias if used) becomes a variable in the script. If the column name is a
NASIS data element name the data type for the column is the same as the element’s. If
not, either CHARACTER or NUMERIC must be specified.

The file name is entered in quotes. The whole file path can be within one pair of quotes,
or there can be several parts within quotes and separated by a slash. A full path name is
required if you are using a file that you have created on your computer. If just the file
name part is supplied the file must be in the NASIS installation under the “data\input
files” folder. Examples are:

INPUT col1, col2 FILE ”lookup.data”.

INPUT areaname, areaacres FILE “C:\My Documents\datafile”.

The first example uses just a file name, so it is presumed to be a file distributed with
NASIS. The second example uses a file in the My Documents folder.

Input from a file can be aggregated, as described above for queries, to produce single or
multiple valued variables. If the INPUT statement precedes any queries in a script, the
report will have a cycle for each input record just as if a query were used. A BASE
TABLE declaration cannot be used in this case. If the INPUT appears after a query, the
aggregation for the INPUT is assumed to be global, similar to a parameterized query.

The input record must be in ASCII character format. A delimiter follows each data value
in the input record. Any character string can be specified as the delimiter. The default is
the “pipe” character, “|”.

INTERPRET Statement

 NASIS CVIR Language Manual – Release 6.0 47

INTERPRET

Syntax:

INTERPRET rule [, rule] …
 [MAX REASONS max_value]
 [MAX RULEDEPTH max_value]
 [sort-specification] [aggregation]

rule ⇒ [“site_name” :]“rule_name”

 max_value ⇒ { number | variable }

Used In:

Report

Generates interpretations for inclusion in a report. One or more rules can be specified,
and the interpretation values will be computed during each cycle of the report. The
interpretations are produced for the report’s BASE TABLE. The same table must be
used as the base table for the properties used in the interpretation.

Note that the process for generating interpretations is not the same as in NASIS 5. Interps
were formerly written to a temporary database table and retrieved with a query. In NASIS
6 the interp generator works more like a secondary query. During each report cycle
interpretation data is generated for a single row. If the base table is component, interps are
generated for one component at a time. The results become report variables, as listed
below. Sorting and aggregating are available on the set of interp results for each
component.

The rule list specifies rules whose values will be generated. Each rule name is written as
“Site Name”: “Rule Name”. Site Name is the NASIS site that owns the rule, and Rule
Name is the name of the rule. Each name must be in quotes. This can be written as just
“Rule Name” since rule names ares unique. Any rule in the NASIS database can be used
in a report. If a PARAMETER is defined with the option ELEMENT rule.rulename, the
parameter name may be used as a rule list.

The optional phrase MAX REASONS can be used to limit the number of reasons (sub-
rules) whose results will be returned from the interpretation. All sub-rules are used to
derive the interpretation results; this only limits how many are returned in report
variables. If the number of reasons is zero or this phrase is omitted, all sub-rule results
will be included, even the insignificant ones. If the number is greater than zero, the
highest n significant sub-rule results will be returned. Significant means non-zero values
for limitation type interps, or values other than 1 for suitability type interps. The sub-rules
are always sorted so the most significant values are first.

INTERPRET Statement

 NASIS CVIR Language Manual – Release 6.0 48

The optional phrase MAX RULEDEPTH can be used to limit the number of levels of
subrules returned. A rule depth of 0 means use only the main interp rating and no reasons,
depth 1 means the main interp and its first level of reasons. If this phrase is omitted,
subrules to the maximum depth will be returned.

Examples:
INTERPRET “ENG - Shallow Excavations”.

Generates the “Shallow Excavations” interpretation for each component selected by the
report query, and returns its results along with all sub-rule results.

INTERPRET “NSSC_Pangaea”: “FOR-Harvest Equipment Operability”,

“NSSC_Pangaea”: “FOR-Log Landing Suitability”
MAX REASONS 5.

Generates results for two interpretations and returns up to 5 sub-rule results for each rule.
Only non-zero sub-rule results will be returned. Notice that the rule names are fully
qualified by NASIS site name.

Using Interpretations in Reports:

The results of the INTERPRET command are placed in report variables and aggregated
according to the aggregation rules for secondary queries (see sorting and aggregation
beginning on page 37). Unless MAX RULEDEPTH 0 is specified, the interp generator
will produce more than one value in each variable. Usually you will need to specify the
NONE aggregation type for each column you want to use in the report, since the default
aggregation type is UNIQUE. Crosstab aggregation is also available for reports that use
more than one interpretation.

The report variables produced by the INTERPRET statement are:

Variable name Description

PrimaryRuleInterpRuleID The rule id of the top level rule.

PrimaryRuleInterpRuleName The name of the top level rule.

InterpRuleID Rule id of the rule or subrule that produced the
rating values.

InterpRuleName Name of the rule or subrule.

InterpRuleDepth An indicator of the depth of the rating, where 0
is the top level.

InterpRuleResultSequence The sort sequence of the ratings within a top
level rule.

INTERPRET Statement

 NASIS CVIR Language Manual – Release 6.0 49

RatingValueLowLow The fuzzy value of the minimum rating for the
rule or subrule.

RatingClassNameLowLow The rating class name of the minimum rating.

RatingValueLowRV The fuzzy value of the minimum of the
representative values of the ratings.

RatingClassNameLowRV The rating class name of the minimum of the
representative values of the ratings.

RatingValueHighRV The fuzzy value of the maximum of the
representative values of the ratings.

RatingClassNameHighRV The rating class name of the maximum of the
representative values of the ratings.

RatingValueHighHigh The fuzzy value of the maximum rating for the
rule.

RatingClassNameHighHigh The rating class name of the maximum rating.

NullPropertyData True/false indicator that null data was produced
by a Property

DefaultPropertyData True/false indicator that default values were used
to replace null values from a Property

InconsistentPropertyData True/false indicator that inconsistent data were
detected from a Property.

Rating values can be printed either as fuzzy values (numbers between 0 and 1) or as
rating class names, or both. The values of the interp variables are sorted on
InterpRuleResultSequence, which is a number assigned by the interpretation engine such
that each subrule will come out after its parent rule, with the most significant rating
values first. InterpRuleDepth can be used with the NEST option (described in column
layout specifications under the SECTION statement) to print subrules indented below
their parent rules.

MARGIN Statement

 NASIS CVIR Language Manual – Release 6.0 50

MARGIN

Syntax:

MARGIN [LEFT number [IN]] [RIGHT number [IN]]
[TOP number [IN]] [BOTTOM number [IN]] .

Used In:

Report (text style only)

Example:
MARGIN TOP 1 inch BOTTOM 1 inch.

Defines margins for the pages of text style reports. Defaults are one half inch for all
margins. If margins are specified with IN, INCH, or INCHES, they are measured in
inches, otherwise they are in lines or characters. The relationship between lines,
characters and inches is defined by the PITCH specification.

The margin specifications are used to determine how much text can be placed on a page
of output. However, the text file produced by NASIS does not have blank lines for top
and bottom margins, nor blanks spaces for the left and right margins. The user is
responsible for setting appropriate margins in the application used to display the report.

If the page length is UNLIMITED the top and bottom margins are ignored, and if the page
width is UNLIMITED the left and right margins are ignored.

PAGE Statement

 NASIS CVIR Language Manual – Release 6.0 51

PAGE

Syntax:

PAGE [LENGTH { number [IN] | UNLIMITED }]

 [WIDTH { number [IN] | UNLIMITED }] .

PAGE PAD

 line-specification ...

END PAGE PAD .

Used In:

Report (text style only)

Example:
PAGE WIDTH 144 LENGTH 88.

PAGE PAD
 USING normal_template.
END PAGE PAD.

The Page Length/Width statement defines the size of the assumed page for report output.
The default size is length 11 inches and width 8.5 inches. If sizes are specified with IN,
INCH, or INCHES, they are measured in inches, otherwise they are in lines or characters.
The relationship between lines, characters and inches is defined by the PITCH
specification.

NASIS does not control the final appearance of the report, since it is displayed in an
application of the user’s choosing. The user may have to set the page size, margin and
font in that application in order to produce printed output that matches the desired
pagination.

Length can be specified as UNLIMITED, which means that the whole report is treated as
a single page. This can be used in reports that are for screen display or for saving as text,
but if the output is sent to a printer there will be no headings on each page.

Width can also be specified as UNLIMITED, which means that report lines are as long as
the data in them requires. This is useful when the report output is saved as text, but
sending the output to a printer would probably not be desirable.

PAGE PAD is used when lines to fill any unused space at the end of a page, or when the
FILL command is used. The line specification in the PAGE PAD block is printed instead
of the default padding, which is a blank line. If the block contains more than one line, the
whole block of lines is printed repeatedly to fill the required space.

PARAMETER Statement

 NASIS CVIR Language Manual – Release 6.0 52

PARAMETER

Syntax:

PARAMETER name [parameter_attribute]

⇒

value_type
SELECTED
SEARCH
MULTIPLE

"" PROMPT
element ELEMENT

 attributeparameter_

string

⇒

OBJECT
CODENAME
CODESEQ
CODEVAL
BOOLEAN
NUMERIC
CHARACTER

 value_type

Used In:

Report

A PARAMETER allows the user to customize the report script through a dialog.
Parameter names are variables in the report script similar to variables created by the
DEFINE statement, and may have zero or more values. Parameters are commonly used
in WHERE clauses, or to provide a rule name in the INTERPRET statement, or for
column names in a CROSSTAB.

The PARAMETER definition statement is normally placed at the beginning of the report
script. For compatibility with older report scripts, the statement may begin with a #
symbol like a comment, but the # is no longer required. Following the parameter name,
one or more attributes may be specified to customize the parameter dialog. The attributes
are:

ELEMENT means that the parameter takes the same values as the named data
element. If the element has a choice list, that list appears in the parameter dialog.
The element’s data type will also apply to the parameter value(s). The element
name should be written as tbl_nm.elm_nm to be sure that the name is unique.

PARAMETER Statement

 NASIS CVIR Language Manual – Release 6.0 53

PROMPT provides a label for the input field in the parameter dialog. This can
give the user hints on how to fill in the parameter value. If no prompt is provided,
the Label field from the ELEMENT definition is used as the prompt. If neither
PROMPT nor ELEMENT is provided, the parameter name is used as the prompt.

MULTIPLE means that more than one value can be entered for the parameter. If
a choice list is used, multiple choices can be selected. The result of the parameter
dialog is a multiple-valued variable.

SEARCH means that a choice list will be built for use in the parameter dialog by
searching the database for all unique values entered for the specified data element.
The ELEMENT attribute must be used with SEARCH. Note that it could take
some time to build a choice list if the element is in a table with many rows.

SELECTED is like SEARCH but only searches the data in the current selected
set. This will present the user with a list of choices that could actually appear in
the report. An example is a choice list for crop name. Normally this would list all
crop names in the domain, but with SELECTED the choice list only includes
crops that actually occur in the selected set.

The value type option allows the type of the parameter to be specified when the
ELEMENT attribute is not used, or when code conversions are needed. The type
tells the parameter dialog how to format the parameter value. Only one value type
may be specified. The allowed types are:

CHARACTER means that the value entered by the user will be surrounded by
quotes when it appears in the report script. This is the default if neither type nor
ELEMENT is specified.

NUMERIC means that the user must enter a number, and the quotes are not used.

BOOLEAN means that the parameter dialog will display a toggle button instead
of a data entry field. The parameter’s value is numeric, and contains a 1 or zero
indicating whether or not the user toggled the button.

CODEVAL can be used when the parameter refers to a data element that uses
codes. This option specifies that the parameter value will be returned as the
code’s value, although the choice list contains code names. The default for coded
elements is CODEVAL.

CODESEQ can be used when the parameter refers to a data element that uses
codes. The parameter value will be returned as the code’s sequence number.

CODENAME can be used when the parameter refers to a data element that uses
codes. The parameter value will be returned as the code’s name.

PARAMETER Statement

 NASIS CVIR Language Manual – Release 6.0 54

OBJECT means that the parameter is an object name, such as a rule or property
name. The parameter dialog displays a choice list for selecting NASIS site and
object names. The parameter must refer to an element in the root table of a
NASIS object, typically the name column. The value returned is in the format
used in the DERIVE and INTERPRET statements, namely “site”:“name”. If
used with the MULTIPLE option, the user can select multiple object names.

The following fragments of report scripts illustrate the use of parameters:

PARAMETER aname ELEMENT area.areaname PROMPT “Survey Area”.

EXEC SQL select ... where area.areaname = aname and ...

This asks the user to provide a survey area name, which is then used in a query to
get records for the selected area. The parameter dialog would look like:

PARAMETER crops ELEMENT dmucropyld.cropname MULTIPLE SELECTED.
...
... CROSSTAB BY dmucropyld.cropname VALUES crops

This example allows the user to select one or more crop names from a choice list
based on the contents of the selected set. The names will be used as column
headings in a crop yield report. The prompt will be the label for the element
dmucropyld.cropname, which is “Crop Name”, as shown:

PITCH Statement

 NASIS CVIR Language Manual – Release 6.0 55

PITCH

Syntax:

PITCH [HORIZONTAL number] [VERTICAL number] .

Defines the character spacing, in characters or lines per inch. The default is horizontal 10
characters per inch and vertical 6 lines per inch, which corresponds to a 12-point fixed-
width font such as Courier. The pitch specifications are used in combination with the
page width, length and margins specified in the PAGE statement to determine how much
text will fit on a page of output.

Used In:

Report (text style only)

Example:
PITCH HORIZONTAL 17 VERTICAL 8.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 56

SECTION

Syntax:

SECTION [section-name] [keep-option] [condition]
[HEADING output-specification ...]
[DATA output-specification ...]

END SECTION .

section-name ⇒ name

Used In:

Report

Example:
SECTION WHEN LAST OF musym KEEP WITH main
DATA
 AT 40 “----------”.
 AT 40 total_acres width 10 decimal 2.
END SECTION.

A report section defines a block of report output that is produced as a unit. A section can
be unconditional, meaning that the section’s data block is printed on each cycle of the
report’s main query, or it can be printed only when certain conditions occur. A report can
have any number of sections. The sections are printed in the order determined by their
conditions, as discussed below under Section Conditions.

For a simple example, imagine a report script having a section “A”, which prints the
mapunit symbol and mapunit name, followed by a section “B” that prints the component
name. Section B is unconditional, and section A prints whenever the value of the
variable “musym” changes. This would be defined in the following manner:
SECTION A WHEN FIRST OF musym
DATA
 AT LEFT musym, muname.
END SECTION.

SECTION B
DATA
 AT LEFT compname.
END SECTION.

The output of the report might be:
12A Hamerly-Vallers complex, 0 to 2 percent slopes
Hamerly
Vallers

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 57

Hamre
26A Windsor loamy sand, 0 to 3 percent slopes
Windsor

This would be produced from a query returning 4 records for the two mapunits. The first
mapunit has three components and the second mapunit has one component. Since section
A has a “first of” condition, it is printed before unconditional sections when a new value
of musym is encountered. Then section B is printed for each input record until a change
in musym occurs. Then section A is printed again, and finally section B is printed for the
last record.

To define a section, specify one or more of the following features, each of which is
discussed in more detail later. Note that in XML output style there is no concept of a
“page”, so page layout features, such as KEEP and HEADING, are ignored.

1. A section can be given a name. Names are used in the KEEP option, and can be
useful as documentation.

2. A KEEP controls the splitting of the section when the end of a page is reached.

3. A condition specifies when the section is used. If no condition is provided, the
section appears for each report cycle.

4. If a HEADING block is provided, it prints at the top of the report page after the
general header. If the section has no condition, the heading prints on every page, but if
the section has a condition the heading only prints if the condition is true when it is
time to start a page. The heading block contains one or more output specifications. If
any data element values are printed in a heading, they will come from the record
being processed at the time the heading prints (Note that this differs from the use of
data in headers and footers).

5. If a DATA block is provided, it prints on each report cycle for which the condition
holds. The data block contains one or more output specifications, and each of them
can have an IF condition attached. The actual number of lines of output produced by a
section is determined by many factors, including the conditions, the number of values
stored in the variables being printed, and the length of text fields.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 58

SECTION: Conditions

Syntax:

⇒

DATA NO
END AT
START AT

itionbreak_cond
pressionboolean_ex

 WHEN condition

break_ condition
FIRST
LAST

 [OF] identifier [, identifier]⇒

Example:
SECTION WHEN type == 2

A condition can be an ordinary Boolean expression based on data from the database or
report variables. In this case, the section prints whenever the condition evaluates to True.
Boolean expressions are described under the DEFINE statement.

Another form of the condition detects control breaks in the report data. This type of
condition begins with the keyword FIRST or LAST. At least one of the identifiers in the
break condition should be a data element in the sort key for the main report query. A
control break occurs when the value of any specified element, or of any element higher in
the sort key, changes. The choice of FIRST or LAST in the break condition determines
which data are used for the lines printed in the section. With FIRST, the first record with
the new value of the control variable is used, while LAST uses the last record with the
old value. The LAST condition would be used for printing subtotals for a group of
records, while FIRST would be used for printing a heading line before a group of
records.

The remaining conditions are used for special conditions that occur no more than once in
a report.

The AT START condition means that the section prints before any other sections (but
after the headers), while an AT END section prints after the last data record (but before
the footers). The default for these sections is no printing.

A NO DATA section prints only if there are no input records, and could be used print a
message such as “No data found”. If the NO DATA section is not used and there is no
input, no report output is produced. Instead, a warning dialog is displayed to the user.

When a heading block is specified in an unconditional section, the result is easy to
visualize; the heading lines print on each report page following the page header. The

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 59

headings appear in the order that the sections are defined. To reduce confusion, it is a
good idea to include all unconditional headings in a single section, and place this section
first in the script. In a simple report, both headings and data can be specified in the same
unconditional section.

The operation of headings in conditional sections can be a little unexpected. These
headings only print if a page break occurs while the conditional section is being printed.
It helps to arrange for a page break to occur just before printing the conditional section.
This feature can require some trial and error to get the desired results.

Heading lines can contain references to data elements or variables, whose values print in
the heading. Note that headings are generated each time a new page begins, so the
heading will contain values in effect at the time they print. In particular, a LAST OF
section will use values from the last record before the control break, and a FIRST OF
section will use values from the new record (the one causing the control break). Note
however, if a LAST OF section (or any other type of section) causes a page break, all the
headings on the new page will use data from the new record.

The order of processing for section conditions is:

1. AT START (only once per report)

2. FIRST OF (per report cycle)

3. Other sections, in the order they appear in the script

4. LAST OF (per report cycle)

5. AT END (only once per report)

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 60

SECTION: KEEP option

Syntax:

keep-option ⇒ { NO KEEP | KEEP WITH section-name [, section_name] ... }

Example:
SECTION b KEEP WITH A

The KEEP option controls what happens when the end of a page is reached while a
section is being printed. Without any KEEP

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 61

SECTION: Output Specifications

Syntax:

output-specification ⇒ [IF expression] line_content

{ }
{ }

⇒

 atementelement_st
ntat_stateme

. ... c]column_spe ,[c column_spe ametemplate_n USING
]) ...] argument , [argument ([subreport INCLUDE

. PAGE NEW
. INCHES | LINES FILL
. INCHES | LINES SKIP

 ntline_conte

number
number

subreport ⇒ [“site_name” :]“report_name”

argument
variable
element
literal

⇒

Examples:
SKIP 2 LINES.
AT LEFT musym WIDTH 8, muname WIDTH 50.
IF comp_pct > 10 USING comp_tmpl compname, slope_l, slope_h.
ELEMENT “tr” musym TAG “td”, muname TAG “td”.
INCLUDE “MLRA10_Office”:”Flood Subreport” (dmudbsidref, coiid).

An output specification is used either to control spacing on the page or to produce actual
report output. Output specifications can be either conditional or unconditional. When the
IF clause is used, the IF expression is evaluated each time the section is processed. The
expression follows the same rules as expressions for the DEFINE statement (see page
17). If it results in a True (non-zero) value, the output content is produced. If the value
of the expression is False (a null, a zero or an empty character string) nothing is output.
Without the IF clause, the output is always produced when its section is printed.

The output content is sometimes called a “logical line” because it is a single unit of
output, even though it may include several “physical” lines on the report page. For
example, if a logical line contains a text field it may require several lines on the page to
print all the text. Depending on the KEEP rules a whole logical line is normally kept
together on one page, unless the text requires more than a full page to print.

The line_content portion of the command describes the output:

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 62

1. The SKIP command produces the specified amount of blank space. Either LINES or
INCHES must be specified for the amount to be skipped. When page formatting is in
effect, skip lines are not carried over past the bottom of a page. SKIP has no effect in
XML style output.

2. The FILL command is like the SKIP command, but it fills the specified space with
repetitions of the PAGE PAD block.

3. The NEW PAGE fills out the page with repetitions of the PAGE PAD, then prints
the footer, starts a new page, and prints the header. If a NEW PAGE occurs at the
very end of a report, the report generator will ignore it and not print an extra blank
page. NEW PAGE has no effect in XML style output.

4. The INCLUDE command runs another report and inserts its output as a logical line in
the first report. Parameters may be passed to the subreport, and they must correspond
with variables in the subreport’s ACCEPT statement. Typically a record key would
be passed as a parameter, which would be used by the subreport to query for
information related to that record. See Using Subreports for more detail.

5. The USING statement specifies a template to serve as a format for the output. The
column specifications in the USING statement are matched to the FIELD keywords
in the template. The element or variable specified in the column spec is printed with
the formatting defined in the template. But any formatting options specified in the
USING override the corresponding options in the template. If the USING does not
have as many columns as there are FIELDs in the template, the remaining fields are
printed as blank. The USING may not have more columns than the template has
FIELDs. Columns in the USING statement may not use the ARRAY or FIELD
options.

6. A text style output line is created with the AT statement, as described below

7. XML style output is created with the ELEMENT statement.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 63

AT Statement

Syntax:

at_statement ⇒ AT position [alignment] column_spec [, column_spec] …

 [; AT position [alignment] column_spec [, column_spec] …] … .

position ⇒ { number [IN] | LEFT | RIGHT | CENTER }

alignment ⇒ { TOP | BOTTOM | SAME }

Examples:

AT LEFT musym WIDTH 8, muname WIDTH 50.
AT CENTER title WIDTH 20 CENTERED; AT RIGHT date WIDTH 12.

The AT statement specifies one or more groups of columns to be placed at specific
positions in an output line. An AT position can be a number, expressed in characters or
inches from the left margin, or it can be the left, right, or center of the line, relative to the
margins. The position may be followed by an alignment option, which defines where this
group of columns appears vertically on the page relative to the previous AT group, as
shown in the examples below. If no alignment is specified the default is TOP.

Following the position and alignment, one or more columns are specified. These
columns print adjacent to each other in order from left to right, with each occupying the
number of characters specified by its WIDTH. When a column has WIDTH UNLIMITED
it uses as many characters as needed to output the data, which may vary from line to line.

If the columns are not supposed to be adjacent a new AT keyword and position may be
used. The list of columns following the AT will begin at the new position. A semicolon
must separate AT groups, as shown in the syntax. Note that when more than one column
spec follows an AT RIGHT or AT CENTER, the group of columns is first strung
together, then right justified or centered as a unit.

Another application for an AT group occurs when printing data from array variables.
Within an AT group that contains array variables, corresponding values in each array
variable will always come out on the same line. If some value in an array is text that
wraps around to a new line blanks will be inserted in the other columns as needed to
maintain alignment across columns. For columns in different AT groups there is no
alignment across columns. Text wrapping can cause data from different array positions to
appear on the same line (which is desirable in some reports). The following example
illustrates this:

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 64

This line specification uses columns “name”, “age” and “score” from a query with aggregation type
NONE, so each column contains an array of values. The column “text” comes from a different query
and has only one value, which is a long text string.

AT LEFT name width 12, age width 6, score width 7; AT 28 text width 28.

This might produce the following output. Because it is in a different AT group, “text” wraps across
several lines, and is not associated with any one of the name lines. But when a name wraps, the
associated data stays in alignment.

Jones 30 5.9 This group of people has
Abercrombie- 52 5.4 responded to all of the
Fitch surveys conducted since May,
Smith 27 6.1 1983.
Martinez 41 5.7

The line with the name “Abercrombie-Fitch” requires two lines of output because the
name doesn’t fit in 12 characters. The age and score are printed on the first of these lines,
and a blank appears beneath them due to wrapping in the first column.

In some cases this might not be quite the desired output. If you want the age and score to
appear lined up with the end of the name rather than the beginning, it would require use
of the alignment option. Age and score would have to be in a separate AT group using
BOTTOM alignment, meaning that they line up with the bottom of the previous AT
group. The following example shows this:

AT LEFT name width 12; AT 13 BOTTOM age width 6, score width 7; AT 28 text width 28.

This version would produce the following output.

Jones 30 5.9 This group of people has
Abercrombie- responded to all of the
Fitch 52 5.4 surveys conducted since May,
Smith 27 6.1 1983.
Martinez 41 5.7

There is a third possible alignment option, SAME. This is used in cases where there are
three or more AT groups, the second one has BOTTOM alignment, and both of the first
two groups could have wrapping of long text. Then there are three possible places for the
third AT group to line up: the original top line of the first group, the bottom of the first
group (which is the same as the second group) or the bottom of the second group. These
three positions correspond to the alignments TOP, SAME, and BOTTOM. In NASIS the
national manuscript report Table E2 uses this feature, if you want to see an example.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 65

ELEMENT Statement

Syntax:

output-specification ⇒ ELEMENT [OPEN | CLOSE] element-name

[attribute [attribute] …] [value-tag] [column-spec [, column-spec] …]

element-name ⇒ “string”

attribute ⇒ (“string”, { “string” | variable })

value-tag ⇒ VALUETAG “string” [attribute [attribute] …]

Examples:
ELEMENT “p” ATTRIB (“class”, “subhead”) musym, “: “, muname.
ELEMENT “tr” musym TAG “td”, muname TAG “td” ATTRIB (“class”
“namecol”).

The ELEMENT statement creates Extensible Markup Language (XML) style output.
XML is an industry standard for exchanging information on the web. An Introduction to
XML is available from W3C, the web standards organization.

HTML, the standard language for web pages, is a subset of XML and can be produced
with the ELEMENT statement. There are many books on HTML, and a simple online
reference is available at http://www.htmlhelp.com/reference/html40. When HTML tags
are used in a report the output can be viewed directly in a browser. Many of the newer
NASIS and Web Soil Survey reports use HTML format and follow the conventions
documented in Appendix 1 to produce consistent looking results.

The ELEMENT statement includes an element name which appears in the opening and
closing tags that surround the content of the element. The first example above uses the
element name “p”, which is the HTML tag for a paragraph, and a class attribute of
“subhead”. The content of the element is three items, a value of musym, a colon-space,
and a value of muname. The output generated by this element might look like this:

<p class=”subhead”>12: Alpha silt loam, 5 to 8 percent slopes</p>

Any attributes applicable to an element can be added with the ATTRIB option. Within the
parentheses, you provide an attribute name and the value. In this example, the attribute
“class” is a standard HTML attribute that links to a style sheet where the formatting for
elements of class “subhead” is defined. An element statement may contain several
attributes.

http://www.w3schools.com/xml/xml_whatis.asp�
http://www.w3schools.com/xml/xml_whatis.asp�
http://www.htmlhelp.com/reference/html40�

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 66

Because XML describes structure as well as data, there will commonly be a need to
produce elements within elements. The CVIR language provides some ways to do this.
The first is the TAG attribute, illustrated in the second example above. When TAG is
used in a column-spec, XML tags are produced around that column’s data. Following the
TAG, additional ATTRIB options can be specified, and those attributes will go in the
column’s tag, rather than the outer element tag. The output might look like this:

<tr><td>12</td><td class=”namecol”>Alpha silt loam, 5 to 8
percent slopes</td></tr>

This is a typical HTML specification for a row of a table (abbreviated “tr”) containing
two table data (“td”) columns. A more common use of this would be to put the element
definition in a TEMPLATE statement, then specify the variables to be output with a
USING statement, as in this example which produces the same output:

TEMPLATE row1 ELEMENT “tr” FIELD TAG “td”, FIELD TAG “td” ATTRIB
(“class” “namecol”).

USING row1 musym, muname.

A further level of XML structure can be applied when the variables being printed in the
ELEMENT statement are arrays. The VALUETAG option is similar to the TAG option
except that it places a tag around each value of the array, while the TAG would place the
tag around the whole set of values. You can use both TAG and VALUETAG to get a
nested tag effect. This example uses the hzname variable that has multiple values:

TEMPLATE row2 ELEMENT “tr” FIELD TAG “td”, FIELD TAG “td”
VALUETAG “p” ATTRIB (“class” “namecol”).

USING row2 compname, hzname.

This puts each horizon name within a “p” tag so that it will appear on a separate line, and
uses the “namecol” class to get the right formatting for that column. The output might be:

<tr><td>Alpha</td><td><p class=”namecol”>A</p><p
class=”namecol”>B</p><p class=”namecol”>C</p></td></tr>

This example has the VALUETAG nested within the TAG option. It is also possible to
nest TAG options within a VALUETAG. In that case the outer tag is repeated for each set
of inner tags, as in the following example.

TEMPLATE row3 ELEMENT “table” VALUETAG “tr” FIELD TAG “td”, FIELD
TAG “td” ATTRIB (“class”, “number”).

USING row3 hzname, hzdept_r.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 67

This example produces a complete table displaying a set of horizon names and depths,
which are assumed to be aggregated into multiple-valued variables. Each pair of values
for hzname and hzdept_r becomes a table row enclosed in a “tr” tag. The output might be:

<table><tr><td>A</td><td class=”number”>0</td></tr>
<tr><td>B</td><td class=”number”>15</td></tr>
<tr><td>C</td><td class=”number”>45</td></tr></table>

This type of output works best if all the variables have the same number of values. If not,
the rows don’t all have the same number of columns

The examples so far have shown how to produce XML tags nested up the three levels
deep, using ELEMENT, TAG and VALUETAG. Often it is necessary to add even more
levels for larger structures. The last example showed a very simple table, but often a table
will have too much information to fit in one ELEMENT statement. Also, a <table>
element would be inside the <body> element of a typical HTML document. These larger
structures usually encompass most if not all the data in a report, so the opening and
closing tags cannot be produced in a single statement. Instead, we use conditional
sections together with the ELEMENT OPEN and ELEMENT CLOSE forms of the
statement. ELEMENT OPEN produces only the opening tag, and it might be placed in a
section with a condition of WHEN AT START or WHEN FIRST OF. The ELEMENT
CLOSE statement produces the corresponding closing tag, and it would be in a section
with condition WHEN LAST OF or WHEN AT END. Here is an example of a part of a
script to produce an HTML table:

SECTION WHEN AT START
 DATA
 ELEMENT OPEN "html".
 EKEMENT OPEN “body”.
 ELEMENT "h1" reporttitle.
 ELEMENT OPEN "table" ATTRIB ("rules", "cols") ATTRIB
("frame", "void").
 elements for table header …
END SECTION.

SECTION
 DATA
 USING row1 compname, hzname, etc.
END SECTION.

SECTION WHEN AT END
 DATA
 ELEMENT CLOSE “table”.
 ELEMENT CLOSE “body”.
 ELEMENT CLOSE “html”.
END SECTION.

Each ELEMENT OPEN must have a matching ELEMENT CLOSE.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 68

Column Specifications

Syntax:

] outcolumn_lay [

array_spec
PAGES
PAGE
FIELD
identifier
literal

 c column_spe

⇒

array-spec ⇒ ARRAY (column-spec [, column-spec] ...)

The column specification identifies exactly what will be printed at a particular spot in a
report. A column can print data from a literal, variable, data element, or page number. It
can also be a compound column (ARRAY) consisting of one or more sub-columns. In a
template definition, the keyword FIELD is used as a place holder, with the actual
element, variable, or literal to be supplied later.

If a variable or element is printed, its value at each report cycle prints according to the
layout options. If a literal is used, it prints the same value each time. The keywords
PAGE and PAGES generate page numbering, and are normally used in headers or
footers. Wherever the word PAGE occurs, the number of the current page is substituted,
before column layout options are applied. The keyword PAGES is replaced by the total
number of pages in the report, as in “Page n of m”.

When the ARRAY specification is used, a group of one or more columns is printed
repetitively, with the same format. Array columns are used only with crosstab reports.
The number of columns actually printed equals the number of column values in the
crosstab, times the number of column specs in the ARRAY spec. The printing sequence
is to print all the columns listed in the ARRAY spec, then repeat for the number of
crosstab values. Any column layout options listed outside the parentheses of an ARRAY
spec apply to all columns within the parentheses, unless overridden by layout options
inside the parentheses which apply to an individual column.

In the description of the EXEC SQL Statement, there is an example of a crosstab on page
27. It produced the data shown in the following table. The variables areaname and acres
are arrays with 3 values each.

musym muname areaname acres

10A Alpha loam, 0 to 3 X Y Z 100 300 400

10A Alpha loam, 0 to 3 X Y Z 200 500

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 69

10B Alpha loam, 3 to 6 X Y Z 600 700

10B Alpha loam, 3 to 6 X Y Z 800

The following example shows one way these data could be printed. Ignoring column
formatting details for the moment, these line specifications for heading and data would
produce the report fragment shown.

HEADING

AT 1 musym LABEL, muname LABEL, ARRAY(areaname).

DATA

AT 1 musym, muname, ARRAY(acres, “acres”).

musym muname X Y Z

10A Alpha loam, 0 to 3 100 acres 300 acres 400 acres

10A Alpha loam, 0 to 3 200 acres acres 500 acres

10B Alpha loam, 3 to 6 600 acres 700 acres acres

10B Alpha loam, 3 to 6 acres 800 acres acres

The heading line prints the labels for the data elements musym and muname, which we
assume are just the column names, then the values for areaname, which define the
groupings.

The data line prints musym and muname, this time as normal report columns, then acres
and the literal “acres” as an array. The values from acres are paired with the word
“acres” and printed in three columns. In this example, the crosstab was not set up with
aggregation, so there are several blank spaces, but the literal prints anyway. The report
could be made to look better by changing the crosstab, or moving the word “acres” into
the heading.

When a multiple valued variable is printed in a column that does not have an array spec,
the values are printed one beneath the other in the column. It results in a set of parallel
report columns for each query column, as illustrated earlier.

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 70

Column Layout Specifications

Syntax:

column-layout ⇒ [WIDTH number [IN]]
[WIDTH UNLIMITED]
[LABEL]
[DIGITS number]
[DECIMAL number]
[SIGDIG number]
[ALIGN { LEFT | CENTER | RIGHT }]
[PAD “character”]
[INDENT number [IN]]
[NEST number [IN] PER identifier]
[NO COMMA]
[TRUNCATE]
[REPEAT]
[SEPARATOR “string”]
[REPLACE NULL [WITH] literal]
[REPLACE ZERO [WITH] literal]
[SUPPRESS [DUPLICATES] [BY identifier]]
[QUOTE[D] [quote-string] [ESCAPE escape-string]]
[TAG “name” [attribute] …
[VALUETAG “name” [attribute] …

attribute ⇒ ATTRIB (“string”, { “string” | variable })

Each column in a report can use zero or more of the above layout options. Each option
can be used only once per column. The options are generally the same for headings and
data, although some are not useful in headings. The options can be written in any order:

1. The WIDTH option overrides the default width for the data in the column. The
default width is taken from the template in a USING statement, from the data
dictionary for data elements, or from the string length for a literal without the
REPEAT option. In text style output there is no default width for a variable, but in
XML output the default is WIDTH UNLIMITED. If the width is followed by IN (or
INCH or INCHES), the width is measured in inches as determined by the horizontal
pitch. The default is to measure width in characters.

2. The WIDTH UNLIMITED option formats the output without fixed column widths.
This overrides the normal word wrap function, as well as the TRUNCATE, ALIGN,
INDENT, NEST and REPEAT formatting options. The data for the column is
printed in the minimum space needed to contain the entire value, preceded by the
optional SEPARATOR string. Numbers are formatted with decimal places defined
in the usual manner, and with no leading spaces or zeros. This is useful with the

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 71

PAGE WIDTH UNLIMITED option for producing text style exports, and is the
default for XML style output.

3. When LABEL is specified, the value printed is not the data, but the ColumnLabel
from the data dictionary for the specified element. This could be used in column
headings. If LABEL is used with a literal or variable, the result is a blank.

4. The DIGITS option is used with numeric data to specify the number of digits to be
printed to the left of the decimal point. The default number of digits for data elements
is taken from the data dictionary. This specification is overridden if the WIDTH is
given explicitly. Numeric values over 999 are printed by default with commas
between groups of 3 digits. The commas are not counted as digits, but do count in the
column width.

5. The DECIMAL option is used with numeric data to specify the number of digits to be
printed to the right of the decimal point. The default number of decimal places is
taken from the data dictionary if a data element is being printed, otherwise the default
is zero. If the number of decimal digits is zero, the decimal point is not printed.

6. The SIGDIG option is used with numeric data to specify the number of significant
digits in the value to be printed. The value is rounded off so that only the significant
digits are shown, and zeros are added as necessary to fill out the remaining places
required by the DIGITS and DECIMAL specifications. The number of significant
digits specified must be greater than zero, and if SIGDIG is not specified, all digits
are considered significant. The following examples show the relationship of the
DECIMAL and SIGDIG specifications:

Original Value DECIMAL SIGDIG Result

527.36 2 3 527.00

0.456 2 1 .50

1384.2 0 2 1400

7. The ALIGN option positions the data within the column. The default is based on the
data dictionary definition for elements. For variables and literals the defaults are left
alignment for character data and right for numeric.

8. The PAD option provides a character to fill out blank space in the column when the
data is shorter than the column width. Padding occurs on the right if the column is
aligned left, on the left if the column is aligned right, and on both sides if the column

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 72

is aligned center. If the text in a column is word wrapped, padding is only applied on
the last line of the text. The default pad character is a space.

9. The INDENT option positions the data a specified number of characters or inches
from its alignment position. A positive indent applies to the first line of a word
wrapped string, while a negative indent applies to lines after the first. In other words,
for typical left aligned data, a positive indent produces first line indentation, while a
negative indent produces “hanging” indentation. For right aligned data, it works the
same way but relative to the right edge of the column.

10. The NEST option is provided for printing interpretations. These are traditionally
printed in a “nested” or “outline” format, with results of each sub-rule indented below
its parent rule. The amount of indentation increases with each level of sub-rule. So a
nested format is really a variable indentation, with the amount of indent proportional
to the depth of nesting. The output of the INTERPRET command includes a column
InterpRuleDepth for just this purpose. The NEST format option allows you specify
an indentation of n spaces (or inches) per depth level. This can be combined with
normal indentation, such as a negative indent amount for hanging indents. For
example, to print an interp result RatingClassNameHighRV with hanging indent of 1
space for word wrapping, plus nesting of 2 spaces per level, use:

RatingClassNameHighRV INDENT -1 NEST 2 PER InterpRuleDepth

11. The NO COMMA option suppresses the placement of commas in numbers larger than
three digits. This is used when printing a numeric value that should not have

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 73

field of width zero at the end of the line, with the desired border character as its
separator.

15. The REPLACE options allow the printing of some other value when a zero or null is
found. This does not affect the operation of any calculations based on the value being
replaced. This function can also be achieved using a variable with a conditional
expression, but the REPLACE form might be more convenient. A value set to null
by SUPPRESS DUPLICATES is not replaced with the substitution value, but
always prints blank.

16. The SUPPRESS DUPLICATES option prevents repetitive printing of data. For
each report input record, the value of a column specified with SUPPRESS is
compared to its value in the previous record. If it matches, blanks print instead of the
value. If the column is part of the sort key for the main report query, the duplicate
suppression does not occur on control breaks. In this context, a control break occurs
when the column or any column higher in the sort key changes value.

This control break behavior can be obtained for non-sort columns with the BY phrase.
The identifier after BY is an element or variable to be tested if the value of the
column itself does not change. If there is a change in the value of the BY variable (or
higher sort columns if the BY variable is in the sort key), suppression does not occur.

17. The QUOTE or QUOTED option surrounds the column’s data with quotation marks
and escapes any embedded quotation marks. This is typically used when exporting
data to another program. The quote-string is a single character that will be added to
the beginning and end of the data. It defaults to the quotation mark (“). The escape-
string is another single character whose default is the back-slash (\). If the data
contains an occurrence of the quote-string or the escape-string, it will be preceded
in the output by the escape-string. If the quote-string and the escape-string are
the same, it means that embedded quotes will be doubled (which is the SQL
convention). To specify a quotation mark, surround it by single quotes: ‘”’.

For example, to use the single quote instead of the double quote, and to double the
quote if it appears in the text, the format option would be written as:

QUOTE “’” ESCAPE “’”

If the original text contained the following:

Elmer said, “That’s all, folks.”

The output using the above format would be:

’Elmer said, “That’’s all, folks.”’

SECTION Statement

 NASIS CVIR Language Manual – Release 6.0 74

18. The TAG option is available in XML style output only. It surrounds the column’s data
with XML opening and closing tags using the “name” string as the tag name.
Additional attributes can be specified with the ATTRIB keyword followed by a name
and value in parentheses. The attribute name must be a quoted string and the attribute
value may be a quoted string, a number or a defined variable. The tag name and
attributes are output according to XML standards.

If the variable being printed in the column is an array with more than one value, the
tag surrounds the full set of values. The result is that the values are concatenated
together unless a VALUETAG option is used to apply a tag to each individual value.

The TAG option must be used within an ELEMENT. Examples are shown in
ELEMENT description.

19. The VALUETAG option is available in XML style output only. It is similar to the
TAG option except that is places tags around the individual values in the array of
values for the column. If the column’s variable has just one value, the TAG and
VALUETAG have the same effect. If both are used on a column, the VALUETAG
appears inside the TAG.

SET Statement

 NASIS CVIR Language Manual – Release 6.0 75

SET

Syntax:

SET column_name [FROM variable] [, column_name [FROM variable]] … .

Used In:

Calculation

Example:
SET aashind_l, aashind_r, aashind_h.
SET dbfifteenbar_r FROM db.

The SET statement is used in calculation scripts to store the results of a calculation back
to the database. The value of the FROM variable is placed in the specified column. If the
column and FROM variable have the same name, the “FROM variable” part may be
omitted. You may use multiple SET statements or multiple columns in a single SET
when the calculation script produces more than one result. The results are stored for each
row the user chooses to be calculated. Rows can be modified only if they are editable and
checked out by the user. If the specified column contains manually entered data (flagged
as “M”), or data from prior to the existence of a calculation (flagged as “P”), it is not
changed unless the user chooses to override (in the Calculation Manager dialog).

Values can be stored in two ways: singly or in groups. If the column_name is a column in
the base table of the calculation, a single value will be stored in each calculated row. If
the source variable has more than one value, only the first one is used. If the calculated
variable has a null value, a null is stored in the column.

A group of values can be stored by specifying a column in a table that is a direct child of
the base table. This causes all existing child rows in the selected set to be updated. If
necessary, rows will be added or deleted to match the number of values in the source
variable. More than one column in the child table may be given new values, by using
multiple SET statements or multiple columns in one SET. Case should be taken to see
that all source variables have the same dimension, or data could be lost.

In case of ambiguity in column names, the form table.column may be used for
column_name. The _r, _l, or _h suffix must be used if the column has modal values.

TEMPLATE Statement

 NASIS CVIR Language Manual – Release 6.0 76

TEMPLATE

Syntax:

TEMPLATE template-name [column-layout] output-specification .

template-name ⇒ name

Used In:

Report

Example:
TEMPLATE basic SEPARATOR “|”
AT LEFT FIELD WIDTH 8, FIELD WIDTH 50.

A template describes the format of a report line without the data. Templates are not
required, but are useful to avoid repetitive specification of layout options. Putting the
statement “USING template-name” into an output specification copies all the column
layout information from the template into the output specification.

In a template, a set of column layout options can be given right after the template name,
and these will be the default for all columns in the template. There must be one and only
one output specification in a template, which must be either an AT or an ELEMENT
statement. This can contain additional column layout options, which take precedence
over the template defaults. Finally, when a template is invoked with a USING statement,
other layout options can be given, which take precedence over the template. Column and
line specifications are described under the SECTION statement.

In the output specification used in a template, it is possible to use a literal, variable or
element name as a value to be printed in some column. This would print the specified
value whenever the template is used. However, the keyword FIELD can also be used in
place of a value, which means that the value to be printed is not defined until it is
specified in a USING statement. An output specification in a template definition may not
contain USING.

WHEN Statement

 NASIS CVIR Language Manual – Release 6.0 77

WHEN

Syntax:

WHEN expression DISPLAY message [parameter [, parameter] …] .

Used In:

Validation

Example:
WHEN sum_pct > 100 DISPLAY “Percents sum to more than 100”.
WHEN error DISPLAY “Error in horizon %s” hzname.

The WHEN statement is used in validation scripts to produce a message when an error
condition is detected. The expression after WHEN is evaluated for each row to be
validated, and if a True (non-zero) value is found the message is added to the validation
message list. If the message contains substitution markers as used in sprintf (such as %s
or %g) values are taken from the list of parameters and placed into the message. The
validation process also records information about which row generated a message, and
this is included when the message list is displayed.

In some cases it is useful to have multiple values for the WHEN expression, or for the
message or its parameters. This causes multiple messages to be generated for each row
validated. If the validation script extracts data from a child of the base table, individual
messages for each child row can be produced by using parameters that have values
collected from the child rows.

Subreports

 NASIS CVIR Language Manual – Release 6.0 78

Using Subreports

The purpose of a subreport is to produce some output that is loosely coupled to the primary
report, meaning that a subreport has its own set of queries and output specifications that might
not be related to those of the primary report. It allows for greater flexibility in cases where
complex formatting is required.

A subreport is requested with an INCLUDE statement in the data block of an output section. The
entire output of a subreport is inserted in the data block as a single logical line. If keep processing
is in effect, it will attempt to keep the subreport output together on a single page. Therefore it is
advisable to design subreports so their output is less than a page. Longer output will spill over
onto additional pages of the main report and possibly produce unwanted results. However, it is
also possible to have a main report that produces no output of its own and only calls a series of
subreports, in which case the main report will be a page by page copy of the subreports.

Subreports may not specify any page layout, such as the page size, font, headers or footers. The
page layout of the main report controls all output from subreports.

A report and its subreports do not need to use the same base table, and no automatic
synchronization is done as with properties in a DERIVE statement. Subreports may call
themselves in a recursive fashion to produce a report on recursively organized data. An example
is a report to list rules and all their subrules at any depth. It is important to pass the right
parameters to a subreport so that it will find the right records to report on and not get into an
endless recursion.

 NASIS CVIR Language Manual – Release 6.0 79

Appendix 1: Conventions for Web Soil Survey Reports

DocBook XML

This appendix describes the conventions for reports used in the Web Soil Survey. If you want to
produce a report in that style, these conventions must be followed. The report script must
produce XML output that conforms to the DocBook XML standard. A DocBook reference
manual is available at http://www.docbook.org/tdg/en/html/docbook.html.

Within the world of DocBook XML, we are using just a subset. Since WSS reports are intended
for use within a larger soil survey document, the outermost element of a report is the <section>1

SECTION WHEN AT START

.
That <section> uses the attribute label=”SoilReport” to identify it. Furthermore, the DocBook
standard requires that every <section> must include at least a <title> element. All of these
requirements can be met by including a standard AT START section in a report script, such as:

DATA
 ELEMENT OPEN "section" ATTRIB ("label", "SoilReport").
 ELEMENT "title" reporttitle.
END HEADER.

In the above example, notice the syntax of the ELEMENT command. If the word ELEMENT is
followed by OPEN or CLOSE, the output will contain only the opening or closing tag of the
element. If not, a complete XML element with opening and closing tags is produced. If
ELEMENT OPEN is used, there must be a corresponding ELEMENT CLOSE somewhere in
the report script (with exceptions as noted below).

The first ELEMENT line is the beginning of the outermost section, as described above. The
report language syntax requires that there be quotes around the tag name (“section”) as well as
the attribute name (“label”) and value (“SoilReport”). An element can have more than one
attribute, by simply adding more ATTRIB () specifications.

Because this line only opens the <section>, there must be a closing tag as well. Normally this is
handled using a SECTION WHEN AT END block in the report script, such as:

SECTION WHEN AT END
 DATA
 ELEMENT CLOSE "section".
END SECTION.

The line beginning ELEMENT “title” is a complete element definition and produces the required
<title> for the <section>. In WSS reports the title of the outermost section is the name of the
report or table. This example prints the contents of a variable named reporttitle, which will
be explained later.

1 In the narrative we use the XML convention of angle brackets to designate an element, such as <section>. In
examples of report scripts the element names are in quotes, using the report language syntax.

http://www.docbook.org/tdg/en/html/docbook.html�

 NASIS CVIR Language Manual – Release 6.0 80

XML Elements Used in Reports

After the AT START section the report script will contain a number of SECTION blocks to
specify the contents of the report. The ELEMENT command is the main output formatting
control and is used either in a TEMPLATE or directly in a SECTION.

The ELEMENT command can contain a list of data fields, each of which can have a TAG,
VALUETAG, and attributes. Tags and valuetags generate complete XML elements that are
placed between the beginning and ending tags of the main element. This creates a structure where
the outer element can contain data or other elements. The difference between a TAG and a
VALUETAG appears when displaying a report variable that has multiple values. A TAG
surrounds the entire set of values for the variable, while the VALUETAG surrounds each
individual value of the variable.

Some examples will illustrate the way ELEMENT can be used.
ELEMENT “title” “Mapunit Description”.

This is the simplest case, consisting of an element name and a string of data. It translates to
the following XML:

<title>Mapunit Description</title>

ELEMENT “col” ATTRIB (“width”, “3*”).

An element can have attributes as well as data. Attributes become part of the opening tag

 NASIS CVIR Language Manual – Release 6.0 81

ELEMENT “tr” ATTRIB (“class”, shading)
 hzname TAG “td” VALUETAG “para”,
 hzdept_r TAG “td” VALUETAG “para” ATTRIB (“role”, “number”).

This example prints data from variables that have multiple values. We can assume that the
query in this report used AGGREGATE by component and specified NONE as the
aggregation type for the horizon names and depths (hzname and hzdept_r). The TAG “td”
places each of these variables in a <td> element, which represents a table cell. Then each
individual value is placed in a <para>, which stands for paragraph and means that each will
appear on a separate line of output. Thus the horizon names and depths will be listed as side
by side columns, although each column is actually within a table cell. This is a common
style for soils reports.

Notice the attributes in this example. The <tr> has an attribute value that is not in quotes. It
refers to a variable named shading, which would have been created in a DEFINE statement
to hold some appropriate class attribute, such as “even” or “odd” (see table of attributes
below). Also, the hzname has no attribute, so it gets the default format, which is simply text
left justified in the cell.

Assuming some arbitrary data for shading, hzname and hzdept_r, this would create the
following XML. This has been indented to make it more readable, but the indentation is not
part of the actual report output and has no meaning:

<tr class=”odd”>
 <td>
 <para>A</para>
 <para>B</para>
 <para>C</para>
 </td>
 <td>
 <para class=”number”>0</para>
 <para class=”number”>15</para>
 <para class=”number”>75</para>
 </td>
</tr>

ELEMENT “variablelist” VALUETAG “varlistentry”
 hzname TAG “term”,
 hzdept_r TAG “listiem” VALUETAG “para”.

This example shows the same data as the previous example in a semi-tabular format rather
than in a table. It uses the DocBook element <variablelist> which can be used to create
bullets or numbered lists, depending on the final style choices. In the report script we do not
need to be concerned with the formatting details, only the structure.

A <variablelist> contains a number of <varlistentry> elements, each of which contains a
<term> and a <listitem>. The <listitem> must contain some other element, in this case a
<para>. To accomplish this there has to be a VALUETAG at the element level. This means
that the <varlistentry> element is produced for each set of values within the element. An
additional VALUETAG on the hzdept_r produces a <para> around the horizon depth. The
resulting XML is thus four levels deep:

 NASIS CVIR Language Manual – Release 6.0 82

<variablelist>
 <varlistentry>
 <term>A</term>
 <listitem>
 <para>0</para>
 </listitem>
 </varlistentry>

 <varlistentry>
 <term>B</term>
 <listitem>
 <para>15</para>
 </listitem>
 </varlistentry>

 <varlistentry>
 <term>C</term>
 <listitem>
 <para>75</para>
 </listitem>
 </varlistentry>
</variablelist>

Elements used in tables

The DocBook standard includes the HTML standard for creating tables, which will be familiar to
most people who have created web pages. The basic elements of a table are listed here. All of
them are needed for a complete WSS report, but for a report that is not for publication many of
the elements can be left out.

• <table> encloses the whole table.

• <title> is for a title that is printed above the table. In SDM reports this is the name of the
soil survey area. If the report uses national mapunit symbols there is no survey area and
the table title is omitted.

• <col> specifies attributes for a column in the table. If used, there must be one <col>
element for each column. In SDM reports this is used to specify a relative width for the
column.

• <thead> is for the table header. Rows within a <thead> receive special formatting so they
look like a heading. They are also repeated at the top of each report page when the report
is converted to PDF.

• <tbody> is the body of the table and occurs after the <thead>.

• <tr> is a row of a table. It can be used within a <thead> or a <tbody> and it contains one
or more <td> elements for the data in the row.

• <td> is table data, sometimes called a cell of a table. It must be within a <tr> element.

 NASIS CVIR Language Manual – Release 6.0 83

• <para> is a paragraph that can be included in a <td>. It is not required, since data can be
included within a <td> directly. The <para> is used in SDM reports to identify the type of
data so that standard formatting styles can be applied.

Note that <para> is a DocBook element for paragraph, and the corresponding HTML
element is <p>. SDM reports use the DocBook convention, but if you are creating a
report with pure HTML output, the <p> should be used.

Elements used in non-table reports

Reports that are not formatted as a table include the various Map Unit Description reports, the
Interpretation Description, and similar reports. Although there is no <table> element there is an
internal structure to these reports, and the <section> element is generally used to represent it. The
DocBook standard allows sections to be included within sections. So, for example, if a report is
organized by survey area there will be a <section> for each new area name. A Map Unit
Description report will have a <section> for each mapunit within the area, and a variety of
<section>s within the mapunit. Each <section> must have a <title>, which is used as a heading
for the section when it is displayed.

Data in these reports is typically displayed in a list (semi-tabular) format. The DocBook
<variablelist> element is used to create a list structure, which can then be displayed in various
ways. The final example above provides an explanation of the use of <variablelist>.

Reports that contain large blocks of text will use the <para> element to enclose the text. The way
you expect the text to be stored in the database will influence the attributes applied to the <para>.
If the text is simply a single paragraph no special attributes are needed. If the text contains line
breaks, tabs or spaces that need to appear in the output, ATTRIB (“role”, ”preservenewlines”) is
needed. If the text contains XML markup that needs to be preserved in the output, use the
SPECIAL option, as in:

 textdata TAG “para” SPECIAL.

Attributes used in all elements

Attributes describe the type of data or the role played by an element in the overall report
structure. This information is used when formatting the report for display, and it can be used in
different ways depending on the display format. For example, the same report might appear in a
web site and in a PDF document meant for printing. This separation of the functional description
of a report and its display formatting allows one report script to serve multiple purposes.
However, only certain attributes are recognized by the formatter, and unrecognized attributes are
ignored. So the conventions listed here must be followed closely to produce reports with a
consistent appearance.

Element Attribute Name Attribute Value Meaning
”section” “label” “SoilReport” Required to identify the

outermost section of a soil report
 ”Survey_Area” Data for one survey area. The

 NASIS CVIR Language Manual – Release 6.0 84

title of the section is the survey
area name. Used in reports that
don’t have tables.

 ”Map_Unit_Description” Data for one mapunit in a map
unit description report.

 others The Map Unit Description report
has labels to signify the type of
data in each section, but they are
currently ignored by the
formatting program,

”title” ”role” ”suppressTitle” Do not display a title for the
current section. Although the
<title> element is required in a
<section>, this will suppress
display of the title.

”table” ”orient” ”land” Table is wide and should be
displayed in landscape
orientation.

“col” “width” “n*” Relative column width expressed
as a number followed by an
asterisk. A column with width “3*”
is 3 times as wide as a column
with width “1*”. The exact width
of a column depends on the
overall width of the table and
width of the other columns.

”tr” ”class” ”mapunit” A table row that begins the data
for a map unit.

 ”even” A table row that can be shaded
in alternating colors to improve
readability. Alternates with “odd”.

 ”odd” A table row that can be shaded
in alternating colors to improve
readability. Alternates with
“even”.

 ”interpdata” A table row containing data
about an interpretation in the
Survey Area Data Summary
report.

 ”units” A table row containing units of
measure. It is a type of
subheading for the table

”td” ”rowspan” a number Number of rows in the heading
occupied by this cell. Part of
standard HTML tables.

 “colspan” a number Number of columns in the
heading occupied by this cell.
Part of standard HTML tables.

 “class” “begindatagroup” Cell is the first of a group of cells
that are set off visually by a

 NASIS CVIR Language Manual – Release 6.0 85

heavier vertical border on the left
edge.

 “enddatagroup” Cell is the last of a group of cells
that are set off visually by a
heavier vertical border on the
right edge.

 “datetime” Cell contains a date/time field
that should be formatted
according to the date
conventions for the report.

“para” “role” “mu-name” Content is a mapunit symbol or
name.

 “comp-name” Content is a component name.
 “number” Numeric data, normally displayed

right justified in a cell.
 “class-name” Non-numeric data, such as a

class name, normally displayed
centered in a cell.

 “hang-list” Multiple values of character type
data which are displayed in a
vertical list with hanging indents

 “preservenewlines” Content is a text field that may
include newlines, tabs, and
significant spaces. Normally this
“white space” is removed. This
attribute will preserve the layout
of the original text.

Parameters for Web Soil Survey Reports

 NASIS CVIR Language Manual – Release 6.0 86

PARAMETER useNationalMapunits BOOLEAN.
Set to 1 if national mapunit symbols (mukey) are to be printed, or 0 if survey based mapunit
symbols (musym) are to be used.

PARAMETER crops MULTIPLE CHAR.
The list of crop names selected for inclusion in a crop yield report.

The last example uses what is called a “dynamic choice list”, meaning that the list of choices
depends on the area of interest selected by the user. There is currently a limited set of parameters
that can be used as dynamic choice lists. In place of “crops” the following parameter names can
be used:

cocrops: Crop names from the Component Crop Yield table that have non-null yield data.

mucrops: Crop names from the Mapunit Crop Yield table that have non-null yield data.

interps: Names of interpretations (rules) exported with the selected survey area(s).

sainterps: Same as interps but allows more than 3 selections.

cotextkinds: Component text kind and category.

mutextkinds: Mapunit text kind and category.

nontechdesccats: Mapunit text categories where text kind is “nontechnical description”.

counties: County names found in the Legend Area Overlap table for the area of interest.

Using parameters in a report query

Most of the parameters listed above are used in the report queries to control the selection of data.
In one case, “useNationalMapunits”, the parameter is also used in the body of the report to alter
parts of the output. In the queries, some unusual SQL features are used. This is an example from
a crop yield report that uses most of the parameter options:

1) EXEC SQL select areaname, musym, museq, mapunit.mukey muiid, muname,
2) Nationalmusym, compname, comppct_r, localphase, component.cokey,
3) cropname, yldunits, irryield_r, nonirryield_r
4) from legend, mapunit, component, outer cocropyld
5) WHERE join legend to mapunit
6) and join mapunit to component
7) and join component to cocropyld
8) and (areasymbol=$areasym OR mapunit.mukey in ($mukeys))
9) and (majcompflag = "Yes" OR 1 = $includeminor)
10)and cropname in ($crops)

 NASIS CVIR Language Manual – Release 6.0 87

11)ORDER BY case when $useNationalMapunits =0 then areaname else
nationalmusym end,

12)museq,

13)cropname;

14)AGGREGATE ROWS muiid

15)COLUMN yldunits UNIQUE GLOBAL

16)CROSSTAB cropname VALUES (crops)

17)CELLS irryield_r, nonirryield_r, yldunits.

Line 8 uses the “areasym” and “mukeys” parameters to select the map units for the reports. By
using OR, it will select either by survey area or by mapunit, depending on which parameter is
supplied. Note that when testing this report, if you enter values for both parameters it will select
mapunits that meet either criterion, which may be more than you expected.

Line 9 uses the “includeminor” parameter to select minor components. Here OR is used to say,
select a component if it is a major component, OR if the includeminor parameter is set to 1.

Line 10 uses the “crops” parameter to select crop names. The parameter is used again in line 16
to specify the crosstab values. Doing this forces the report to include a column for each crop,
even if there is no yield data for a crop. It also forces the columns to appear in the order that the
crop names are entered in the parameter.

Line 11 makes use of the “useNationalMapunits” parameter to control the sorting of the report.
This is tricky because when survey area mapunit symbols are used the report is sorted by survey
area, but when national mapunits are used it is not. The SQL CASE expression is used here,
which is similar to the IF expression in a DEFINE statement. Line 11 says to sort by areaname or
by nationalmusym depending on whether survey area or national symbols are used.

Line 12 says to sort on museq. The column museq is the sequence number for mapunits within a
legend, so it is used to sort when using survey area map units. It has no effect when using
national mapunit symbols, but it does no harm to have it there.

Script Variables

A script variable is a special notation used to obtain information about the report script itself
from the database. An example is the name of the report script, which is stored in the “report”
table in the column “report_name”. To include this name in the output of a report, use a reference
to the script variable SCRIPT_NAME, as in:

DEFINE reportname INITIAL SCRIPT(SCRIPT_NAME).

This places the script variable into a normal report variable, reportname, which can then be
printed as part of the report heading. Using INITIAL in this statement means that the variable
reportname is set at the beginning of report processing and never changes.

The script variables availabe in NASIS are a little different from the ones in WSS (from the Soil
Data Mart database) due to differences in table structure. The script variables are:

 NASIS CVIR Language Manual – Release 6.0 88

SCRIPT_NAME The name of the report.

REPORT_TITLE NASIS: same as SCRIPT_NAME.
SDM: the report title from the Home tab in the report editor.

REPORT_HEADER NASIS: blank.
SDM: The text to be used as a head note in the report, from the Home
tab in the report editor.

INTERP_NAME NASIS: blank
SDM: A list of rule names to be included in an interpretation report,
from the Interpretations tab in the report editor.

INTERP_TITLE NASIS: blank.
SDM: The list of column headings to be used with the corresponding
rule in the INTERP_NAME list. This is also entered in the
Interpretations tab.

SCRIPT_ID The internal ID number for the record in the report table. This might
be used to query for data linked to the report in the database.

Using script variables allows a report script to be generalized, so that certain features do not have
to be coded into the script. This capability is used for WSS interpretation reports, which use a
completely generic script. All standard interpretation reports in SDM use exactly the same script.
That script uses script variables to pick up the report name, head note, and list of interpretations
from data stored in the report table. To create a state report using custom interpretations you can
simply copy an existing interpretation report and change the list of interpretations and titles in the
Interpretations tab. You also specify which states will use the report in the Usage tab.

 NASIS CVIR Language Manual – Release 6.0 89

NASIS CVIR Script Writing References

Database Structure Guide

The NASIS 6.0 Database Structure Guide is a comprehensive reference that describes all aspects
of the NASIS database design. The guide provides information you need to know about the
NASIS template model, naming conventions and data types. It can be obtained from the NASIS
web site: http://nasis.usda.gov/documents/metadata/6.0.

Table Structure Report

The Table Structure Report is included in the NASIS 6.0 Database Structure Guide. The table
structure report provides information you need to know about table and column physical names,
modality, data types, and other characteristics necessary for report writing.

Database Structure Diagrams

The Database Structure Diagrams are included in the NASIS 6.0 Database Structure Guide and
the NASIS Online Help. Because of the size of the database the diagrams each show just one
object hierarchy. They show the table relationships required for completing joins between tables.

 NASIS CVIR Language Manual – Release 6.0 90

 Index
ABS ... 28
ACCEPT .. 10, 11, 32, 36
ACOS .. See
AGGREGATE ROWS BY 38
aggregation .. 29, 38, 40
aggregation functions ... 38
alias .. 34
ALIGN ... 70, 71
ALL ... 14
ANY .. 14
arithmetic expression ... 14
array ... 13
array dimension ... 40, 41
ARRAYAVG ... 25, 26
ARRAYCAT ... 20
ARRAYMAX .. 22
ARRAYMIN.. 21
ARRAYROT ... 23
arrays ... 39
ARRAYSHIFT .. 22
ARRAYSUM ... 25
ascending ... 37
ASIN .. 28
ASSIGN ... 12
AT .. 61
ATAN .. 28
ATAN2 .. 28
average ... 25, 26
AVERAGE .. 27, 29, 38, 40
base table ... 10, 32
BASE TABLE ... 11
BOOLEAN .. 53
boolean expression .. 14
BOTTOM .. 50
braces ... 9
brackets .. 9
calculation .. 9
calculation scripts .. 75
call a property script .. 32
calling script .. 32
CELLS (crosstab) .. 38
CHARACTER .. 53
character spacing ... 55
character strings ... 36
CLIP .. 18
CODELABEL.. 21
CODENAME ... 20, 53
CODESEQ ... 53
CODEVAL .. 53
COLUMN (aggregation) .. 38
compute a sum ... 25
compute an average ... 25, 26

concatenation ... 17, 20
conditional expression ... 14
control break .. 73
controlling column ... 41
conventions .. 9
convert codes ... 20, 21
convert geomorphic descriptions 19
convert texture codes ... 18
convert to name case .. 18
convert to sentence case ... 18
convert to upper case ... 18
COS ... 27
covert to lower case ... 18
cross products .. 36
crosstab.. 41, 68
CROSSTAB... 38
DATA .. 56
data type ... 89
Database Diagram .. 89
Database Structure Guide .. 89
DECIMAL ... 70, 71
default aggregation .. 39
default sort type ... 37
DEFINE ... 12
delimiter ... 46
de-normalized .. 36
DERIVE .. 11, 32
descending ... 37
dialog ... 52
different hierarchic paths ... 36
DIGITS .. 70, 71
dimension ... 13
direction of sorting ... 37
division by zero ... 17
EDIT .. 34
ELEMENT .. 65
ELEMENT (parameter) .. 52
ellipsis .. 9
END SECTION ... 56
escape-string ... 73
evaluation of expressions ... 17
Evaluations .. 12
EXEC SQL .. 33
EXP ... 27
export ... 71
expressions... 34
FILL ... 61
FINAL .. 45
FIRST ... 29, 38, 40
FIRST n ... 37
floating point .. 36
FONT ... 44

 NASIS CVIR Language Manual – Release 6.0 91

FOOTER.. 45
format a report line .. 76
FROM clause ... 34
fuzzy values ... 49
generate interpretations .. 47
GEOMORDESC .. 19
GLOBAL ... 38, 40
global aggregation ... 41
HEADER ... 45
HEADING ... 56
heading lines .. 58
HORIZONTAL.. 55
IF THEN ELSE ... 14
implementation name ... 36
INCLUDE .. 61
INDENT .. 70, 72
INITIAL .. 14, 45
initial value .. 12
initialization ... 14
INPUT ... 46
input file delimiter ... 46
input grouping .. 39
insensitive (sort type) ... 37
INTERPRET ... 47
INTERVALS ... 42
invoke a property ... 32
ISNULL ... 14
iteration .. 11, 12, 39, 56
JOIN .. 35
keywords .. 9
LABEL .. 70, 71
LABELS (crosstab) ... 38
LAST ... 29, 38, 40
layout option precedence ... 76
LEFT ... 50
lexical .. 37
line, logical vs. physical ... 61
lines per inch .. 55
LIST ... 30, 38, 40
literal .. 14
local variable ... 32
LOCASE .. 18
log files .. 36
LOG10 ... 27
logical line ... 61, 78
logical name ... 36, 89
login name ... 25
LOGN .. 27
LOOKUP ... 23
MARGIN ... 50
MAX .. 24, 30, 38, 40
maximum value .. 22
MIN ... 24, 30, 38, 40
minimum value .. 21
MOD .. 29

modal ... 36
modality ... 89
MULTIPLE (parameter) .. 53
multiple input values .. 39
multiple valued variable 20, 25, 26
multiple values ... 13
NASIS web site .. 89
NEST ... 70, 72
NEW .. 20
NEW PAGE ... 45, 61
NMCASE... 18
NO COMMA ... 70, 72
NONE .. 38
NOT ... 14
null value ... 17
NUMERIC... 53
OBJECT ... 54
order of execution .. 32
outer joins .. 34
PAD ... 70, 71
PAGE ... 51
page n of m pages .. 68
page numbers ... 45
PAGE PAD .. 51
PARAMETER ... 52
parametric query 10, 36, 39, 43
physical name .. 89
PITCH ... 50, 51, 55
POW .. 28
printing crosstab arrays .. 69
PROMPT (parameter) .. 53
property.. 9
Property script ... 10
purpose of EXEC SQL ... 34
query .. 34
QUOTED ... 70, 73
REAL ... 34
recursive reports .. 78
REGROUP .. 29
REPEAT .. 70, 72
repeating groups .. 36
REPLACE ... 73
REPLACE NULL WITH... 70
REPLACE ZERO WITH ... 70
report ... 9
report iteration ... 39
report section ... 56
reserved words ... 12
RIGHT ... 50
rotate values in array .. 23
ROUND ... 29
SEARCH... 53
SECASE .. 18
secondary aggregation ... 29
SECTION .. 56

 NASIS CVIR Language Manual – Release 6.0 92

SELECT clause .. 34
SELECTED .. 53
semicolon ... 36, 63
SEPARATOR .. 70, 72
SET .. 75
shift values in array .. 22
SIGDIG.. 71
SIN ... 27
SKIP .. 61
SORT BY .. 37
SPRINTF ... 24
SQRT ... 28
string expression .. 15
string formats ... 24
STRUCTPARTS ... 20
subqueries .. 35
subreport .. 62
substring... 17
subtotals ... 26
suffix .. 36
sum .. 25
SUM .. 26, 29, 38, 40
SUPPRESS DUPLICATES 70, 73
symbol (sort type) .. 37
Table Structure Report ... 89
TAG ... 74
TAN ... 27
template ... 62
TEMPLATE .. 76

temporary tables... 36
test condition.. 14
TEXTURENAME ... 18
TODAY ... 25
TOP ... 50
trailing blanks .. 18
TRUNCATE .. 70, 72
type of script .. 9
UNIQUE .. 38
UNLIMITED .. 51, 70
UPCASE .. 18
USER ... 25
USING ... 61
USING (template) .. 76
validation ... 9
validation scripts .. 77
VALUETAG ... 65, 74
variable dimensions ... 10
variable names ... 10
variable types ... 10, 12
variable width field .. 70
variables of different dimensions 23, 26, 29
VERTICAL ... 55
weighted average ... 26
WHEN ... 77
WHERE clause .. 35
WIDTH .. 51, 70
WTAVG .. 26

	NASIS CVIR Language Manual
	Overview of CVIR Scripts
	Data Flow in CVIR Scripts
	Query Scripts
	Property Scripts
	Calculation and Validation Scripts
	Report Scripts
	Text Style Reports
	XML Style Reports
	Running Reports Against Local or National Database

	CVIR Syntax Reference
	Conventions used in this Guide
	ACCEPT
	BASE TABLE
	DEFINE
	Storing Multiple Values in a Variable
	Expression Syntax
	Explanation of Expression Syntax
	String Expressions
	Function Expressions
	Numeric Functions
	REGROUP Expression

	DERIVE
	EXEC SQL
	EXEC SQL: Sort Specification
	EXEC SQL: Aggregation Specification
	FONT
	HEADER and FOOTER
	INPUT
	INTERPRET
	Using Interpretations in Reports:
	MARGIN
	PAGE
	PARAMETER
	PITCH
	SECTION
	SECTION: Conditions
	SECTION: KEEP option
	SECTION: Output Specifications
	AT Statement
	ELEMENT Statement
	Column Layout Specifications
	SET
	TEMPLATE
	WHEN

	Using Subreports

	Appendix 1: Conventions for Web Soil Survey Reports
	DocBook XML
	XML Elements Used in Reports
	Elements used in tables
	Elements used in non-table reports
	Attributes used in all elements

	Parameters for Web Soil Survey Reports
	Using parameters in a report query

	Script Variables

